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Abstract

Within an effective Dirac-Weyl theory we solve the scattering

problem for massless chiral fermions impinging on a cylindri-

cal time-dependent potential barrier. The setup we consider

can be used to model the electron propagation in a mono-

layer of graphene with harmonically driven quantum dots. For

static small-sized quantum dots scattering resonances en-

able particle confinement and interference effects may switch

forward scattering on and off. An oscillating dot may cause in-

elastic scattering by excitation of states with energies shifted

by integer multiples of the oscillation frequency, which sig-

nificantly modifies the scattering characteristics of static dots.

Exemplarily the scattering efficiency of a potential barrier with

zero bias remains finite in the limit of low particle energies

and small potential amplitudes. For an oscillating quantum

dot with finite bias, the partial wave resonances at higher en-

ergies are smeared out for small frequencies or large oscilla-

tion amplitudes, thereby dissolving the quasibound states at

the quantum dot.

Model & solution of the scattering problem

• 2D Dirac-Weyl equation in graphene

i∂tψ (r , t) = −iσ∇ψ (r , t) + Û (r , t)ψ (r , t)

with circular harmonically driven potential step

Û (r , t) =
[
V + Ṽ sinωt

]
θ (R − r) Î

neglecting intervalley scattering with low-energy approximation

• Floquet-theory + eigenfunctions
(energy n ∈ Z + angular momentum m ∈ Z)

• matching the wave functions at r = R

near-field quantities
ρ = ψ†ψ

j = ψ†σψ

particle density

current density

far-field quantities

j ref
r (r − t, ϕ) = ψref †̂jrψ

ref

Q (r − t) =
1

2R

∮
j refds

angular scattering

scattering efficiency

Scattering process. A low-energy plane Dirac electron

wave ψin, propagating in a monolayer graphene sheet

on a gated substrate, hits a circular time-dependent po-

tential step that can be tuned by applying a voltage. The

gate-defined graphene quantum dot is characterized by

the constant (V ) and oscillating (Ṽ , ω) parts of the po-

tential, and the radius R. In the process of scattering

reflected ψref and transmitted ψt waves appear.

Bandstructure and energy conditions. On ac-

count of the time-dependent potential the particles

energy E is not conserved. The reflected and trans-

mitted particles have quantized energies, En =

E + nω where n = 0,±1,±2, . . . (only the first ex-

cited energies were marked in the plot), and carry

an angular momentum (i.e., their wave vectors have

components in any planar direction).

Quantum dot with zero bias
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Scattering efficiency. Intensity plot of the time-averaged far-field scattering ef-

ficiency Q of an oscillating graphene quantum dot with V = 0 near the charge

neutrality point E = 0, as function of R and Ṽ for ω = 1 [panel (a)], respectively,

in dependence on R and ω for Ṽ = 2.32 [panel (b)]. Panels (c) and (d) give

the first four scattering coefficients |rm=0,n|2 of the reflected wave for Ṽ = 2.32,

ω = 1 and for R = 2.75, Ṽ = 2.32, respectively. The pattern of the scattering

efficiency is determined by the scattering coefficients with m = 0, n 6= 0.

scattering behavior
• near the charge neutrality point

(with zero bias): resonance of
partial waves with m = 0 (n 6= 0)
only

• ”absorption threshold”: Ṽ/ω ≈ 1
• pronounced scattering signals:

quasibound states at the
quantum dot

• peaks in Q are determined by
peaks of the scattering
coefficients |rm=0,n 6=0|2

• dot act as a switch: scattering
can be turned on and off by
varying frequency ω at fixed
R, Ṽ

limiting cases
1 ”static regime” Ṽ → 0
2 ”adiabatic regime” ω → 0:

the smaller ω the more dot
eigenmodes can be excited;
scattering becomes completely
inelastic

3 ”antiadiabatic regime” ω →∞:
particle feels an averaged
potential only

⇒ scattering efficiency vanishes
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Radiant emittance by the quantum dot. The parameters Ṽ = 2.32,

ω = 1, and R = 2.75 used belong to a strong scattering signal. Panel

(a) displays the time-dependence of the far-field radial component of the

reflected current j ref
r . Panels (b) and (c) show the time-averaged density

n = ψ†ψ and current field j̄ = ψ†σψ in the near field, respectively. Panel

(d) classifies the current field: unbound librations (violet lines) and bound

rotations (green curve) are separated by a separatrix (red curve).

scattering characteristics
• forward scattering is preferred

(resonance of m = 0 mode only)
• symmetry |r0,n| = |r0,−n|: period of

emittance is half the period of the
potential oscillation

near field
• incident electron is temporarily

captured by the quantum dot and
subsequently reemitted in forward
direction

• maximum electron density in the
center of the quantum dot at r = 0
(partial trapping of the particle)

• pattern of the current density is
symmetric to the x axis and
reveals two vortices where the
incident wave is fed into

• different regimes of near-field
current pattern: bound (rotation)
and unbound (libration) flow lines
separated by a separatrix

• Klein tunneling (i.e., perfect
transmittance, no backscattering)
for perpendicular incidence

Quantum dot with finite bias

0 2 4 6 8

V

0

0.5

1

1.5

|r
m

=
0

,n
|2

0 1 2 3
0

1

|r
m

=
1

,n
|2

(c)

~
3 3.2 3.4 3.6 3.8 4

ω

0

2

4

6

8

10

|r
m

=
1

,n
|2

n=0
n=1
n=-1
n=2
n=-2
n=3
n=-3

(d)

Scattering efficiency. Intensity plot of the time-averaged far-field scattering

efficiency Q of an oscillating graphene quantum dot with finite bias (V = 1),

in dependence on R and Ṽ for ω = 1, E = 0.1 [panel (a)], respectively, as a

function R and ω for Ṽ = 0.75 and E = 0.0629 [panel (b)]. The lower figures

give the corresponding (squared) amplitudes of the scattering coefficients |rm,n|2

as functions of Ṽ [panel (c), where E = 0.1, ω = 1, R = 4.5 ] and ω [panel (d),

where E = 0.0629, Ṽ = 0.75, R = 7.75] of the reflected wave.

below absorption threshold
• elastic scattering for Ṽ/ω � 1
• static quantum dot for Ṽ → 0

(”static regime”) and ω →∞
(”antiadiabatic regime”)
⇒ resonances belonging to
quasilocalized modes: broad
m = 0-mode and sharp
m = 1-mode in panel (a),
m = 1-mode in panel (b)

above absorption threshold

• inelastic scattering for
Ṽ/ω ' 1: resonances with
higher energies (|n| > 0) will be
excited
⇒ largely washed-out
scattering signals as a result of
superimposing of states with
different n

• decreasing ω: oscillation of
intensity maximum due to
asymmetry of the dot potential

• ”adiabatic regime” ω � Ṽ :
large number of dot modes are
stimulated
⇒ signatures composed of
many partial waves with
different m, n
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Zero-frequency Limit
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Scattering behavior approaching the adiabatic limit. System parame-

ters are E = 0.1, V = 1, and Ṽ = 2. (a) Time-averaged scattering effi-

ciency Q as function of R and ω. (b) Static scattering efficiency Qst [U]. (c)

Time-averaged scattering efficiency Q at fixed ω = 0.15 (red curve) com-

pared to the result Q (ω → 0) obtained in the adiabatic limit (black line).

near the ”adiabatic” regime ω → 0:
large number of possibly excited en-
ergy levels
⇒ numerical treatment cumbersome!

analytical approach
• static quantum dot at any

infinitesimal point in time τ

Qst [U] =
4

kR

∞∑
m=0

∣∣r st
m (U)

∣∣2
with U = V + Ṽ sin (ωτ )

• scattering efficiency in the
adiabatic limit:

Q (ω → 0) =
1

2Ṽ

V+Ṽ∫
V−Ṽ

Qst [U] dU

• adiabatic structures in scattering
efficiency can be associated to the
static dot’s m = 0 mode and its
overtones

Conclusions
• above absorption threshold Ṽ/ω ≈ 1: inelastic scattering with potential transitions into side-bands En = E + nω.

• antiadiabatic (ω � Ṽ ): elastic scattering (static quantum dot), adiabatic (ω � Ṽ ): completely inelastic scattering.

• Zero-bias case (near the charge neutrality point): enhanced forward scattering, periodic emittance/trapping by the

quantum dot, dot act as a switch by tuning the dot parameters R, ω and Ṽ .

• Finite-bias case: modes with finite angular momentum & excited (shifted) energies belonging to side bands with

positive and negative n, largely out-washed and oscillating scattering signals above the absorption threshold Ṽ/ω ≈ 1.
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