

Übungen zur Theoretischen Physik 3

SS 2019

Blatt 9

Abgabe: Dienstag, 4.6.19 vor der Vorlesung

Aufgabe 25 Harmonischer Oszillator III – Besetzungszahldarstellung

In der Vorlesung wurde der eindimensionale harmonische Oszillator behandelt. Der Zustand $\psi_n = (b^{\dagger})^n \psi_0 / \sqrt{n!}$ ist der (n+1)-te normierte Eigenzustand zu

$$H = \frac{p^2}{2M} + \frac{M\omega^2 x^2}{2} = \hbar\omega \big(b^\dagger b + \frac{1}{2}\big) \ . \label{eq:Hamiltonian}$$

Es gilt $\langle \psi_n | \psi_m \rangle = \delta_{nm}, \ b\psi_0 = 0 \text{ und } [b, b^{\dagger}] = 1.$

Quantenmechanik

- a) Berechnen Sie die Erwartungswerte $\langle \psi_n | b^\dagger b | \psi_m \rangle$, $\langle \psi_n | b b^\dagger | \psi_m \rangle$, $\langle \psi_n | (b^\dagger)^2 | \psi_m \rangle$ und $\langle \psi_n | b^2 | \psi_m \rangle$.
- b) Drücken Sie Orts- und Impulsoperator durch b und b^{\dagger} aus und berechnen Sie für m=1,2,3 die Erwartungswerte $\langle \psi_n|x^m|\psi_n\rangle$ und $\langle \psi_n|p^m|\psi_n\rangle$. Was ergibt sich für das Unschärfeprodukt im n—ten Eigenzustand?
- c) Zeigen Sie, dass $[b, \exp(\alpha b^{\dagger})] = \alpha \exp[\alpha b^{\dagger}]$ und $[b^{\dagger}, \exp(\alpha b)] = -\alpha \exp[\alpha b]$. Was ergibt sich daraus für $\exp[-\alpha b^{\dagger}]b \exp[\alpha b^{\dagger}]$ und $\exp[-\alpha b]b^{\dagger} \exp[\alpha b]$?

Aufgabe 26 Harmonischer Oszillator IV – Parität

Untersuchen Sie das Verhalten der Oszillatoreigenzustände aus der vorherigen Aufgabe bei Raumspiegelung. Dazu empfiehlt es sich dimensionslose Größen zu benutzen, also den Operator b^{\dagger} in $\psi_n = (b^{\dagger})^n \psi_0 / \sqrt{n!}$ durch ξ und ∂_{ξ} auszudrücken. Der Operator der Raumspiegelung, $P\psi(\xi) = \psi(-\xi)$, heißt Paritätsoperator. Zeigen Sie, dass P sich darstellen läßt als

- a) $P\psi(\xi) = \int d\eta K(\xi, \eta) \psi(\eta)$ mit $K(\xi, \eta) = ?$,
- b) $P = \exp[i\pi b^{\dagger}b]$ und
- c) $P = (-i) \exp \left[i\frac{\pi}{2}(\xi^2 \partial_{\epsilon}^2)\right].$

Aufgabe 27 Harmonischer Oszillator V – Supersymmetrie

Betrachten Sie den Hamilton-Operator

$$H^0 = -\frac{1}{2}\frac{d^2}{dx^2} + V^0(x) ,$$

wobei $V^0(x)$ ohne Einschränkung der Allgemeinheit so gewählt sei, dass für den Grundzustand $H^0\psi_0^0=0$ gilt.

a) Zeigen Sie, dass mit Hilfe der Operatoren $Q^{\pm} = \frac{1}{\sqrt{2}} \left[\mp \frac{d}{dx} + \Phi(x) \right], \ \Phi(x) = -\frac{d}{dx} \ln(\psi_0^0)$ für H^0 und einen weiteren Operator H^1 folgende Darstellungen möglich sind,

$$H^0 = Q^+ Q^- \ , \ H^1 = Q^- Q^+ \ ,$$

mit
$$H^1 = -\frac{1}{2}\frac{d^2}{dx^2} + V^1(x), V^1(x) = V^0(x) + \frac{d}{dx}\Phi(x).$$

- b) Berechnen Sie $(Q^-)^{\dagger}, [Q^-, Q^+], Q^+H^1 H^0Q^+, Q^-H^0 H^1Q^-$ und $Q^-\psi^0_0$.
- c) Gegeben sei ein Eigenzustand ψ_n^1 (ψ_n^0) von H^1 (H^0) mit Eigenwert E_n^1 (E_n^0). Zeigen Sie, dass $Q^+\psi_n^1$ ($Q^-\psi_n^0$, n>0) Eigenfunktion von H^0 (H^1) mit Eigenwert E_n^1 (E_n^0) ist, d.h. die Eigenwertspektren beider HamiltonOperatoren auseinander abgeleitet werden können.