

Fortgeschrittene Quantenmechanik

WS 2018/2019

Blatt 2

Abgabe: Mittwoch, 31.10.18 vor der Vorlesung

Aufgabe 3 Pionische Atome

Übungen

Pionische Atome bestehen aus Systemen mit positiver Kernladung Ze und einem π^- -Meson.

(a) Bestimmen Sie die stationären Lösungen (Energie E) der Klein-Gordon-Gleichung

$$\frac{1}{c^2} \left(\mathrm{i} \hbar \frac{\partial}{\partial t} - V(\vec{r}) \right)^2 \Psi(\vec{r},t) = \left[\left(\frac{\hbar}{\mathrm{i}} \nabla \right)^2 + m^2 c^2 \right] \Psi(\vec{r},t)$$

für das Coulomb-Potential $V(r) = -Ze^2/r$. Es gelte $Z\alpha < l + \frac{1}{2}$, wobei l die Drehimpulsquantenzahl und $\alpha = e^2/\hbar c$ die Feinstrukturkonstante ist.

Hinweis: Mit den Substitutionen $m'=E/c^2$, $l'(l'+1)=l(l+1)-(Z\alpha)^2$ und $2m'E'=E^2/c^2-m^2c^2$ erhält man für den Radialanteil eine Differentialgleichung, die ähnlich ist zur Radialgleichung des nichtrelativistischen Wasserstoffatoms (Vorsicht: l' ist nicht ganzzahlig). Zeigen Sie, dass $E'=-m'c^2(Z\alpha)^2/(2n'^2)$ mit $n'=\nu+l'+1$, ν ganzzahlig, und lösen Sie diese Beziehung nach der Energie E auf.

- (b) Entwickeln Sie E für kleine $Z\alpha$ bis zur vierten Ordnung in $Z\alpha$.
- (c) Was geschieht für $Z\alpha > l + \frac{1}{2}$?

Aufgabe 4 γ -Matrizen

Die γ -Matrizen (4 × 4) sind definiert durch $[\gamma^{\mu}, \gamma^{\nu}]_{+} = 2g^{\mu\nu}$ mit $\operatorname{Tr} \gamma^{\mu} = 0$.

- (a) Prüfen Sie diese Relation explizit für die Standarddarstellung $\gamma^0 = \hat{\beta}, \gamma^i = \hat{\beta}\hat{\alpha}_i$.
- (b) Wir bilden aus den γ -Matrizen 16 linear unabhängige Matrizen Γ^n :

$$\begin{split} \Gamma^S = 1, \qquad \Gamma^V_\mu = \gamma_\mu, \qquad \Gamma^T_{\mu\nu} = \sigma_{\mu\nu} = \frac{\mathrm{i}}{2} [\gamma_\mu, \gamma_\nu]_- \quad (\mu \neq \nu), \\ \Gamma^P = \gamma_5 = \gamma^5 = \mathrm{i} \gamma^0 \gamma^1 \gamma^2 \gamma^3, \qquad \Gamma^A_\mu = \gamma_5 \gamma_\mu. \end{split}$$

Zeigen Sie:

- (i) $(\Gamma^n)^2 = \pm 1$.
- (ii) Zu jedem Γ^n $(n \neq S)$ existiert ein Γ^m mit $[\Gamma^n, \Gamma^m]_+ = 0$.
- (iii) $[\gamma^{\mu}, \gamma_5]_{+} = 0.$
- (iv) $[\gamma_5, \sigma_{\mu\nu}]_- = 0.$
- (v) Für $n \neq S$ gilt Tr $\Gamma^n = 0$.
- (vi) Zu jedem Paar Γ^n , Γ^m , $n \neq m$, gibt es ein $\Gamma^p \neq 1$, so dass $\Gamma^n\Gamma^m = \beta\Gamma^p$ mit $\beta = \pm 1, \pm i$.
- (vii) Die Matrizen Γ^n sind linear unabhängig.
- (viii) Falls eine (4×4) -Matrix X mit jedem γ^{μ} kommutiert, dann ist $X \propto 1$.