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Abstract

Solid state physics is undoubtedly an applied science. It provides (together with chemistry)
the theoretical framework for systematically manipulating the materials on which modern day
technology is based. At the same time, it is continually driven by the forces this technology
creates. The main driving force of solid state physics is most likely the economic pressure for
miniaturization, which subsequently inspires solid state scientists to explore new materials and to
identify ways to tap into microscopic processes which are not yet commercially exploited. In turn,
each new generation of materials fabricated and each new attempt to utilize the microscopic fabric
of materials for technological applications provide a unique laboratory for testing and eventually
replenishing the general notions and concepts of solid state physics.

The author’s research interests and activities, which are summarized in this report, illus-
trate unintentionally, but at the same time quite naturally, the various ways in which solid state
physics is currently pushed forward by technology. Charged excitons, for instance, to be dis-
cussed in Chapter 1, can be most clearly observed in high-quality low-dimensional semiconductor
structures (quantum wells, quantum wires, and quantum dots), grown with techniques originally
developed for engineering the VLSI circuitry of modern microprocessors. These structures can be
also used to study the fundamental aspects of quantum mechanics of many-body systems. Here
we consider the optical properties of a doped quantum well. We are particularly interested in
the consequences of the dynamical response of the interacting conduction band electrons to the
sudden appearance of the photo-induced valence band hole. At low-to-intermediate conduction
band electron densities this leads to the formation of charged excitons (trions), that is, in-medium
bound states comprising two conduction band electrons and one valence band hole. Whereas at
high densities, the dynamical response gives rise to power-low signatures in the optical suscep-
tibility at the Fermi energy (Fermi-edge signatures). The concept of a dynamical (or transient)
response to a sudden perturbation (in contrast to an adiabatic response to a stationary perturba-
tion) is rather general. It also plays, for instance, an important role in the Kondo effect. In this
sense, the quantum well can be considered as a model system in which fundamental quantum me-
chanical effects can be realized and studied in a controlled manner. Chapter 2, on the other hand,
is devoted to polarons. The revival of polaron physics is due mainly to materials synthesized quite
recently during the last couple of decades – the high-temperature superconducting perovskites
and the colossal magneto-resistance manganites, both of which with a huge technological poten-
tial. At the same time, however, these materials defy a complete description within the generally
accepted framework of solid state physics. Instead, they seriously challenge basic concepts, for
instance, the concept of a quasi-particle or the concept of extended and localized states. One
consequence of this challenge is the increasing awareness in the solid state physics community
of problems which have not yet found a satisfactory solution. We focus in Chapter 2 on one of
those problems, Anderson localization in an interacting system, which comes here in the guise of
self-trapping (polaron formation) in an imperfect crystal with strong electron-phonon coupling.
Finally, Chapter 3 addresses the electron spin dynamics in a non-magnetic semiconductor. The
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application-driven desire to utilize the electron spin for data storage and processing created a
tremendous world-wide activity to investigate spin-dependent effects in semiconductors. This has
led to the newly emerging field of spintronics. A subclass of spintronic device concepts attempts
to utilize electron spin polarizations in non-magnetic semiconductors. The device operation is
thus performed by an externally induced non-equilibrium spin polarization, which decays after
the external probe is removed. The characterization of the spin polarization requires therefore
a kinetic theory. In Chapter 3 we specifically present a semiclassical kinetic theory for the non-
equilibrium electron spin dynamics in III-V semiconductors, paying due attention to the subtle
band structure effects, which cause spin relaxation, and the multiple timescales on which the spin
polarization evolves. Even if spintronics may turn out to be technologically not yet feasible, it
has already led to a new class of model systems for the investigation of spin dephasing in solids.

The three chapters of this report can be read independently. Each chapter starts with intro-
ductory remarks, which motivate the investigation at hand. The core parts, respectively, give a
complete, self-contained description of the theoretical methods and concepts employed and the
theoretical results obtained. Concluding remarks summarize the content of each chapter sepa-
rately and give a short outlook for future research directions. The topics treated in the three
chapters are rather different, each one is therefore separately preceded by an abstract. To assist
a quick orientation, we restate the abstracts here again.

Chapter 1 discusses the calculation of the optical susceptibility of a doped quantum well. We
primarily focus on the linear optical response of a weakly n-doped quantum well, where the inter-
action between the photo-induced neutral exciton with the excess carriers in the conduction band
leads to the formation of a negatively charged exciton (trion). In this regime, we conceptualize
trion formation as the lowest order dynamical response of the conduction band electrons to the
sudden appearance of the photo-induced valence band hole. The cluster mean field approximation
can then be applied to determine the optical response. It reduces the calculation of the optical
susceptibility to the solution of two in-medium few-body problems: an in-medium two-particle
problem (exciton) and an in-medium three-particle problem (trion). The medium, described in
Hartree-Fock approximation, decorates the interactions within the two- and three-body clusters
with phase space factors and the single particle energies with Hartree-Fock corrections. Although
screening is strictly speaking beyond the cluster mean field approximation, it can be phenomeno-
logically included replacing the bare Coulomb interaction by a statically screened one. Besides a
detailed description of the cluster mean field approach, we present semi-analytical results for the
extreme dilute limit, where medium corrections are negligible and excess carriers only provide a
reservoir for bound state formation. Even within this crude approximation, the overall agreement
with experimental results is quite good. Experimental data from highly doped quantum wells
show that bound states disappear at a critical density. The optical response in the vicinity of the
conduction band Fermi energy displays then a power-law dependence typical for the Fermi-edge
signature. This regime is beyond the cluster mean field approximation. In the second half of the
chapter we make therefore an attempt to derive a minimal set of equations for the calculation
of the optical response at arbitrary conduction band electron density. Our approach is based on
a systematic parquet analysis of the intra- and interband four-point functions. Since the par-
quet equations correspond to the crossing symmetric summation of two-line reducible diagrams,
the two interband channels responsible for the Fermi-edge signature are naturally accounted for.
Additional effort is however necessary to incorporate the system’s propensity of trion formation
at low-to-intermediate densities. For that purpose, we identify a subclass of two-line irreducible
interband diagrams containing three particle correlations which, at low enough density, lead to
trion formation. Including this set of diagrams in the driving term of the interband parquet equa-
tions gives then an interband vertex, which also contains at low enough densities a contribution
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from trion states. The optical susceptibility obtained from this vertex extrapolates, at least in
principle, between the bound state dominated low-to-intermediate density regime to the Fermi-
edge dominated high density regime. The discussion in the second part of the chapter remains
qualitative and should be understood as exploratory.

Chapter 2 discusses self-trapping of a single charge carrier (polaron formation) in a disordered
environment, with special emphasis on Anderson localization of polaron states. In the first half of
the chapter we study, at zero temperature, the dynamics of a single electron in a Holstein model
augmented by site-diagonal, binary-alloy type disorder. The average over the phonon vacuum and
the alloy configurations is performed within an effective single-site approximation, which maps
the lattice problem on to a problem involving only a single self-consistently embedded impurity
site. In particular, we employ the dynamical coherent potential approximation, which is noth-
ing but the single particle limit of the more general dynamical mean field theory. We present
numerical results for a Bethe lattice with infinite coordination number. In particular, we investi-
gate, in the intermediate electron-phonon coupling regime, the spectral and diffusion properties
in the vicinity of the high-energy edge of the lowest polaronic subband. To characterize the dif-
fusion properties, we define a spectrally resolved delocalization time, which is, for a given energy,
the characteristic time scale on which the electron leaves a given site. We find delocalization
times substantially enhanced for states with a large phonon content, i.e., in the absence (pres-
ence) of alloy-type disorder at the high-energy edge(s) of the polaronic subband (mini-subbands).
According to their delocalization times, we discriminate between “fast” quasi-particle-like and
“sluggish” defect-like polaron states. Within the dynamical coherent potential approximation it
is however impossible to determine the critical disorder needed to localize polaron states. Ac-
cordingly, mobility edges for polaron states cannot be determined. To overcome the limitations
of the dynamical mean field theory, we adopted therefore the statistical dynamical mean-field
theory to the disordered Holstein model. The second half of chapter 2 is a detailed discussion of
this approach. The statistical dynamical mean field approximation maps the lattice problem on
to an ensemble of self-consistently embedded impurity problems, in contrast to the single impu-
rity problem obtained within the dynamical coherent potential approximation (viz. dynamical
mean field approximation). It is not only capable of accounting the polaron formation process
but also the spatial fluctuations giving rise to Anderson localization. The statistical dynamical
mean field approximation is a probabilistic approach, focusing on the distributions instead of the
average values for observables of interest. We employ a Monte-Carlo sampling technique to solve
the self-consistent equations of the theory on a Bethe lattice with finite coordination number,
representing distributions for random variables by random samples and discussing various ways
to determine mobility edges from the random sample for the local Green function. Specifically,
we give, as a function of the “polaron parameters”, such as adiabaticity and electron-phonon
coupling constants, a detailed discussion of the localization properties of a single polaron, using
a bare electron as a reference system.

Chapter 3 presents a semiclassical kinetic theory for the non-equilibrium electron spin dy-
namics in non-magnetic semiconductors. The approach accounts for elastic as well as inelastic
scattering and treats Elliott-Yafet and motional-narrowing processes, such as D’yakonov-Perel’
and variable g-factor processes, on an equal footing. Focusing on small spin polarizations and
small momentum transfer scattering, we derive, starting from the full quantum kinetic equations,
a Fokker-Planck equation for the electron spin polarization. The dynamics of the spin polariza-
tion is thereby visualized in terms of a “test” spin polarization which scatters off “field” particles
(electrons, impurities, phonons). We then construct, using a rigorous multiple time scale ap-
proach, a Bloch equation for the macroscopic (~k-averaged) spin polarization on the long time
scale, where the spin polarization decays. Spin-conserving energy relaxation and diffusion, which
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occur on a short time scale, after the initial spin polarization has been injected, are incorporated
and shown to give rise to a weight function which defines the energy averages required for the
calculation of the spin relaxation tensor of the Bloch equation. We give explicit expressions for
the spin relaxation tensor, applicable to bulk and quantum wells. To illustrate our approach, we
calculate for specific situations the lifefime of a photogenerated electron spin polarization in bulk
GaAs and a GaAs quantum well. For bulk GaAs, we discuss the magnetic field dependence of
spin relaxation times taking electron-impurity and electron-phonon scattering into account. We
focus in particular on the competition between the quenching of the D’yakonov-Perel’ process and
the field-induced variable g-factor process. We find an optimal magnetic field for which the spin
lifetimes are maximal and point out that the sign of the slope of the field dependence of the trans-
verse spin lifetime reveals whether the Elliott-Yafet or the D’yakonov-Perel’ process dominates
spin relaxation at small magnetic fields. For a GaAs quantum well, we calculate spin lifetimes
at temperatures and densities where electron-electron and electron-impurity scattering dominate.
We find that spin lifetimes are non-monotonic functions of temperature and density. Our results
show that at electron densities and temperatures, where the cross-over from the non-degenerate
to the degenerate regime occurs, spin lifetimes are particularly long.



Contents

1 Charged Excitons in Weakly Doped Quantum Wells [1–3] 1

1.1 Introductory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Model Hamiltonian and Optical Susceptibility . . . . . . . . . . . . . . . . . . . . . 4

1.3 Cluster Mean Field Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 General Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Exciton Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Extreme Dilute Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Numerical Results [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Beyond the Cluster Mean Field Approximation: An Outlook . . . . . . . . . . . . 17

1.5.1 The Problem of the Fermi-Edge Signature . . . . . . . . . . . . . . . . . . . 17

1.5.2 Parquet Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.3 Minimal Set of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Appendix Hylleraas Variational Approach for the Trion Groundstate . . . . . . . . . . . 31

2 Polaron Formation and Disorder [4–7] 37

2.1 Introductory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Dynamical Coherent Potential Approximation (DCPA) [4] . . . . . . . . . . . . . . 40

2.2.1 The Concept of an Effective Single Site . . . . . . . . . . . . . . . . . . . . 40

2.2.2 Calculation of the One-Resolvent . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.3 Validity of the Factorization Procedure . . . . . . . . . . . . . . . . . . . . 46

2.2.4 Calculation of the Two-Resolvent . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.5 Specification to a Bethe Lattice . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3 Numerical Results I [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.1 Spectral Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.2 Diffusion Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4 Critique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5 Statistical Dynamical Mean Field Theory (statDMFT) [5–7] . . . . . . . . . . . . . 62

2.5.1 Disorder and Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.5.2 General Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5.3 Specification to a Bethe Lattice . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.5.4 Localization Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.5.5 Single Electron and T=0 Limit . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.6 Numerical Results II [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.6.1 Electron States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.6.2 Polaron States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



viii CONTENTS

Appendix A Polaron Impurity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Appendix B DCPA Ward Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Appendix C Ω = 0 Limit of the DCPA Equations . . . . . . . . . . . . . . . . . . . . . . 91
Appendix D StatDMFT for a Single Polaron: Multiple Scattering Approach . . . . . . . 93
Appendix E Large Coordination Number Limit of the statDMFT . . . . . . . . . . . . . 97

3 Electron Spin Dynamics in Semiconductors [9–11] 99
3.1 Introductory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.2 Spin Dependence of Semiconductor Electronic Structure . . . . . . . . . . . . . . . 102
3.3 Semiclassical Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.3.1 Kinetic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.3.2 Calculation of the Self-Energies . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.3.3 Diffusion Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.3.4 Multiple Time Scale Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.4.1 Spin Relaxation in Quantum Well Structures [9] . . . . . . . . . . . . . . . 125
3.4.2 Spin Relaxation in Bulk Semiconductors [10, 11] . . . . . . . . . . . . . . . 133

3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Appendix Construction of the Fokker-Planck Differential Operator . . . . . . . . . . . . 145

Bibliography 149

Acknowledgements 159

Declaration 161

Curriculum Vitae 163



List of Figures

1.1 Dynamical response of CB electrons to the photogenerated VB hole . . . . . . . . 3

1.2 Experimental absorption spectra for a 10nm CdTe quantum well at T=2K . . . . . 4

1.3 Dynamical part of the exciton self-energy (not a Feynman diagram) . . . . . . . . 10

1.4 Exciton spectral function DX(ω̃) for na2
B = 0.008 and 4Rβ = 10 . . . . . . . . . . 13

1.5 Trion absorption bands for different temperatures and CB electron densities . . . . 14

1.6 Temperature and density dependence of the ratio of spectral weights fT

fX
. . . . . . 15

1.7 Phenomenologically broadened optical absorption spectrum . . . . . . . . . . . . . 16

1.8 Feynman diagrams for the CB electron and VB hole self-energy . . . . . . . . . . . 18

1.9 Feynman diagram for a generic four point function . . . . . . . . . . . . . . . . . . 20

1.10 The five chaining operations used to construct reducible four-point functions . . . 21

1.11 Lowest order diagrams generated by the five chaining operations . . . . . . . . . . 22

1.12 Three particle correlations burried in the two-line irreducible block . . . . . . . . . 25

1.13 Complete two-line irreducible eh vertex with trion part separated off . . . . . . . . 25

1.14 The independent variables for the trion groundstate calculation . . . . . . . . . . . 32

2.1 Illustration of the “philosophy” behind an effective single-site approximation . . . 41

2.2 Schematic representation of a fourth order process contributing to Q
[2]
i . . . . . . . 47

2.3 Schematic representation of the second order processes contributing to the local
DCPA vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Schematic representation of the integral equation for the local DCPA vertex . . . . 49

2.5 DCPA spectral and diffusion properties of the Holstein model in the vicinity of the
first polaronic subband for λ = 0.98, α = 0.25 . . . . . . . . . . . . . . . . . . . . . 53

2.6 Blow-up of Fig. 2.5 in the immediate vicinity of the high-energy edge of the lowest
polaronic subband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7 DCPA spectral and diffusion properties of the Holstein alloy in the vicinity of the
high-energy edge of the first polaronic subband for c = 0.5 and δ = −0.01 . . . . . 55

2.8 DCPA density of states N(ω) for the Holstein alloy in the vicinity of the first
polaronic subband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.9 Scattering strength dependence of the DCPA spectral and diffusion properties in
the vicinity of the high-energy edge of the first polaronic subband . . . . . . . . . . 57

2.10 η−asymptotics of the spectrally resolved return probability P (ω, η) for the Holstein
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.11 Spectrally resolved delocalization time T0(ω) for the Holstein model in the vicinity
of the high energy edge of the first polaronic subband . . . . . . . . . . . . . . . . 59

2.12 Spectrally resolved delocalization time T0(ω) for the Holstein alloy in the vicinity
of the high energy edge of the first polaronic subband for c = 0.5 and δ = −0.002 . 61

2.13 Illustration of the cavity method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



x LIST OF FIGURES

2.14 K = 2 Bethe lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.15 Distribution for the LDOS of the Anderson model at ω = 0 and three different
degrees of disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.16 Average and typical LDOS for the Anderson model with γ̄ = 1.5 and η = 10−10 . . 73

2.17 η-scaling of the distribution for the LDOS of the Anderson model below (ω = −0.9)
and above (ω = 0) the lower mobility edge for γ̄ = 1.5 . . . . . . . . . . . . . . . . 74

2.18 η-scaling of the typical LDOS of the Anderson model at ω = 0 for γ̄ = 1.5 . . . . . 75

2.19 Mobility edge trajectory for an electron in the Anderson model . . . . . . . . . . . 76

2.20 Evolution of the LDOS N(ω) and the imaginary part of the interaction self-energy
for the Holstein model with increasing electron-phonon coupling and fixed adia-
baticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.21 Typical tunnel rates Γtyp(ω) for the lowest polaronic subband in the Anderson-
Holstein model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.22 Average and typical LDOS for the lowest polaronic subband in the anti-adiabatic,
strong coupling regime for γ̄/W = 2.5 with W the width of lowest subband of the
pure Holstein model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.23 η-scaling of the distribution for the LDOS for two energies within the lowest pola-
ronic subband (anti-adiabatic strong-coupling regime) . . . . . . . . . . . . . . . . 80

2.24 Comparison of the disorder dependence of the typical LDOS in the center of the
band of the pure Anderson model and the center of the lowest polaronic subband
of the Anderson-Holstein model in the anti-adiabatic strong coupling regime . . . . 81

2.25 Parts of the mobility edge trajectories for the lowest polaronic subband of the
Anderson-Holstein model in the anti-adiabatic strong coupling and the adiabatic
intermediate-to-strong coupling regime . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.26 Evolution of the (low-energy) average and typical LDOS for the Anderson-Holstein
model for four different degrees of disorder . . . . . . . . . . . . . . . . . . . . . . . 83

2.27 Average and typical LDOS of the Anderson-Holstein model in the Anderson regime 84

2.28 Average LDOS for the Bethe lattice with connectivity K = 2, 4 and 8 . . . . . . . 98

3.1 Experimentally measured time-resolved Faraday rotation for bulk GaAs . . . . . . 101

3.2 Self-energies contributing to the Born approximation . . . . . . . . . . . . . . . . . 108

3.3 Symbolic representation of type I and II scattering processes . . . . . . . . . . . . 112

3.4 Graphical illustration of the collision terms in the diffusion approximation . . . . . 113

3.5 Schematic illustration of the time evolution of the non-equilibrium spin polarization
as given by the Fokker-Planck equation . . . . . . . . . . . . . . . . . . . . . . . . 116

3.6 Friction, diffusion, and angle randomization coefficient for a modulation doped
quantum well at n = 4 × 109cm−2 and T = 10K . . . . . . . . . . . . . . . . . . . . 127

3.7 Friction, diffusion, and angle randomization coefficient for a modulation doped
quantum well at n = 4 × 1011cm−2 and T = 10K . . . . . . . . . . . . . . . . . . . 128

3.8 Weight function p(ε) for a modulation doped quantum well at T = 10K and three
different electron densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.9 D’yakonov-Perel’ spin lifetime for a 25nm modulation doped quantum well as a
function of electron density and three different temperatures . . . . . . . . . . . . . 130

3.10 D’yakonov-Perel’ spin lifetime for a 25nm doped quantum well as a function of
electron density for T = 40K and for three degrees of compensation . . . . . . . . . 131

3.11 D’yakonov-Perel’ spin lifetime for a 25nm doped quantum well as a function of
temperature at an electron density n = 3 × 1010cm−2 and three degrees of com-
pensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



LIST OF FIGURES xi

3.12 D’yakonov-Perel’ spin lifetime for a 10nm GaAs quantum well as a function of
temperature for n = 1.86 × 1011cm−2 and two degrees of compensation . . . . . . . 133

3.13 Transverse spin relaxation time for bulk GaAs as a function of electron density
and for T = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.14 Spin relaxation time for bulk GaAs as a function of magnetic field for T = 0 and
various electron densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.15 Transverse spin lifetime for bulk GaAs as a function of magnetic field for T = 0,
n = 1018cm−3, and for various degrees of compensation . . . . . . . . . . . . . . . 140

3.16 Spin relaxation time for bulk GaAs as a function of magnetic field for an electron
density n = 1017cm−3 and various temperatures . . . . . . . . . . . . . . . . . . . . 141

3.17 Range of integration for the integrals defining the friction, diffusion, and angle
randomization coefficients due to electron-electron scattering in a quantum well . . 147



xii LIST OF FIGURES



Chapter 1

Charged Excitons in Weakly Doped
Quantum Wells [1–3]

This chapter is an extended version of my invited contribution [1] to the NATO workshop Optical

Properties of 2D systems with interacting electrons, supplemented with material form Refs. [2,3].
It discusses the calculation of the optical susceptibility of a doped quantum well. We primarily
focus on the linear optical response of a weakly n-doped quantum well, where the interaction
between the photo-induced neutral exciton with the excess carriers in the conduction band leads
to the formation of a negatively charged exciton (trion), i.e., a bound state made out of two
conduction band electrons and one valence band hole. In this regime, we conceptualize trion
formation as the lowest order dynamical response of the conduction band electrons to the sud-
den appearance of the photo-induced valence band hole. The cluster mean field approximation
can then be applied to determine the optical response. It reduces the calculation of the optical
susceptibility to the solution of two in-medium few-body problems: an in-medium two-particle
problem (exciton) and an in-medium three-particle problem (trion). The medium, described in
Hartree-Fock approximation, decorates the interactions within the two- and three-body clusters
with phase space factors and the single particle energies with Hartree-Fock corrections. Although
screening is strictly speaking beyond the cluster mean field approximation, it can be phenomeno-
logically included replacing the bare Coulomb interaction by a statically screened one. Besides a
detailed description of the cluster mean field approach, we present semi-analytical results for the
extreme dilute limit, where medium corrections are negligible and excess carriers only provide a
reservoir for bound state formation. Even within this crude approximation, the overall agreement
with experimental data is quite good. Experimental results from highly doped quantum wells
show that bound states disappear at a critical density. The optical response in the vicinity of the
conduction band Fermi energy displays then a power-law dependence typical for the Fermi-edge
signature. This regime is beyond the cluster mean field approximation. In the second half of the
chapter we make therefore an attempt to derive a minimal set of equations for the calculation of
the optical response at arbitrary conduction band electron densities. Our approach is based on a
systematic parquet analysis of the intra- and interband four-point functions. Special attention is
devoted to the problem of incorporating screening and the system’s propensity of trion formation
at low-to-intermediate densities in the parquet equations for the interband interaction vertex.
The optical susceptibility obtained from this vertex extrapolates then, at least in principle, from
the bound state dominated low-to-intermediate density regime to the Fermi-edge dominated high
density regime. The discussion in the second part of the chapter remains qualitative and should
be understood as exploratory.
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1.1 Introductory Remarks

The interaction of an optically generated neutral exciton with excess carriers in the conduction
band has been the subject of extensive experimental and theoretical investigations. In particular
the high density regime attracted much interest.

For bulk semiconductors the high density regime is well understood [12–17]: Dynamical screen-
ing and Pauli blocking prohibit the formation of bound eh states,1 the exciton is therefore unstable
and its spectral weight distributed among eh scattering states. Residual correlations between the
valence band (VB) hole and conduction band (CB) electrons are still important, however. As a
result, the optical response displays in the vicinity of the CB Fermi energy a power-law depen-
dence. The optical absorption, e.g., is then given by I(ω) ∼ (ω − ωT )α, with a threshold ωT and
an exponent α. At low enough temperatures and/or small enough CB electron to VB hole mass
ratios, the exponent α can be negative and the celebrated Fermi-edge singularity develops. [14–17]

Conceptually, the Fermi-edge singularity in the optical response of a doped bulk semiconductor
is analogous to the edge singularity in the X-ray spectrum of a core level in a metal. [18–20] Both
result from correlations between a Fermi sea of electrons and a single hole (see below). However,
in contrast to the Fermi-edge singularity in the X-ray spectra of metals, the Fermi-edge singularity
in doped bulk semiconductors has not yet been observed. Doping not only provides charge carriers
but also counter-ions, which act as very efficient scattering centers. As a consequence, the optical
lineshapes of doped bulk semiconductors at low temperatures are dominated by disorder and not
by correlation effects. The Fermi-edge singularity is burried within a disorder-broadened line.

The situation is different in modulation-doped quantum wells, where counter-ions are spatially
well separated from the two-dimensional electron gas. [21] Impurity scattering is therefore substan-
tially suppressed and correlation effects are expected to strongly influence the optical response.
Considerable theoretical [17, 22–27] and experimental [28–33] work has therefore been devoted
to examine the optical properites of quasi-two dimensional doped semiconductors. In some of
these systems, the Fermi-edge singularity has indeed been observed in the low-temperature op-
tical response. Qualitatively, the high-density optical response is well understood. Although, a
complete, quantitative theoretical analysis is still missing.

Recently the center of interest shifted to low densities. Following the seminal experiment of
Kheng and coworkers [34], which showed that in a weakly n-doped semiconductor quantum well,
photogenerated eh pairs give rise to negatively charged excitons (trions), i.e., bound eeh states
comprising two CB electrons and one VB hole, numerous theoretical [2,3,35–42] and experimental
studies [43–50] have been devoted to investigate the optical properties of weakly doped quantum
wells. The importance of eeh states in the low density regime is now unambiguously established
and a qualitative understanding of the low density regime is starting to emerge.

Both the Fermi-edge signature and the trion are consequences of the dynamical response of
the CB electrons to the sudden appearance (absorption) or disappearance (emission) of the pho-
togenerated VB hole. A typical lowest order process is depicted in Fig. 1.1. The photogenerated
VB hole scatters from one momentum state to another and simultaneously excites a virtual eē
pair (recall our notation, ē denotes a CB hole) to compensate for the momentum transfer. At
low densities, the Coulomb interaction is strong enough to correlate the VB hole with two CB
electrons (the photoexcited CB electron and the CB electron from the eē pair) and a (negatively
charged) trion appears. At higher CB electron densities, an arbitrary number of eē pairs is ex-
cited, giving rise to, among others, the screening of the Coulomb interaction. At some density,
the Coulomb interaction is then perhaps too weak to support trions and/or excitons, but the

1We use the following notation: e, ē, and h denote, respectively, conduction band electrons, conduction band
holes, and valence band holes; a negatively charged exciton (trion), e.g., is therefore an eeh cluster.



1.1 Introductory Remarks 3

k

ε

 µe

Figure 1.1: The left panel illustrates a typical dynamical response of the CB electrons to the photogen-
erated VB hole in an idealized n-doped semiconductor (µe is the chemical potential for the CB electrons).
The right panel shows the corresponding Feynman diagram. The dashed upward running line denotes a
VB hole, whereas the upward and downward running solid lines depict, respectively, a CB electron and
CB hole. Multiple scattering, indicated by the thin stripes attached to the participating lines, correlates
the intermediate eeh cluster to a trion.

residual correlations might produce the power-law dependence typical for the Fermi-edge signa-
tures. The concept of a dynamical or transient response to a sudden perturbation, in contrast to
an adiabatic response to a stationary perturbation, occurs also in other contexts. For instance,
the Kondo effect [51] can be understood along those lines, although the scattering center – a
localized spin – is then not structureless and possesses a memory.

Experimentally the density dependence of the optical response of a doped quantum well has
been traced from the low density, trion-dominated regime all the way up to the high density
regime, where bound states disappear. [32, 43, 48, 49] For the purpose of illustration we show in
Fig. 1.2 the optical density, measured by transmission spectroscopy, for a doped CdTe quantum
well. [48] For the nominally undoped sample (a) the exciton line is dominant, with a weak low-
energy shoulder, because of unintentional doping. The doped samples show first a double peak
structure, due to trion and exciton absorption, and then a broad hump at the Fermi-edge denoted
by “FES”. In this sample, the Fermi-edge singularity is not particularly strong. Disorder effects
due to impurities and/or interface roughness broaden the correlation driven singularity to a hump.

A unified theoretical description of the full density dependence of the optical susceptibility
is still missing. To construct such a theory is a rather formidable task, which we try to address
in the second part of this chapter. In the first part we focus on the low density regime, where
bound states dominate. In this regime, the cluster meanfield approximation can be effectively
used to calculate the optical susceptibility. [2, 3] In contrast to early theoretical studies of trion
states [35–39], the cluster mean field approximation explicitly accounts for a low density of excess
carriers and describes trion and exciton states simultaneously. Medium effects, such as Pauli
blocking, (Hartree-Fock) corrections to the single particle energies, and (static) screening are
incorporated. The high density regime, however, where the power-law dependence at the CB
Fermi-edge is observed, cannot be systematically reached.
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Figure 1.2: Optical absorption spectra for a 10nm CdTe quantum well at T=2K. The data are taken
from Ref. [48]. Electron densities n are (b) 0.2, (c) 1.0, (d) 1.3, (e) 1.8, and (f) 3.0 ×1011cm−2. Sample
(a) is nominally undoped. The zero of energy (≈ 1.61 eV) is taken at the lowest absorption peak, X− or
ω1, in each case. The authors normalized the integrated optical densities [=log(1/transmission)] since the
structures have different numbers of quantum wells.

1.2 Model Hamiltonian and Optical Susceptibility

We consider for simplicity an idealized, strictly two-dimensional quantum well with two isotropic
parabolic bands. With an appropriate choice of single particle states, our formalism can be
of course also applied to more realistic quantum well models, which include, e.g., valence band
mixing and finite band off-sets. Anticipating the application of the model to III-V semiconductors
such as GaAs, the two bands correspond to the conduction band and the heavy hole valence band.
Both are doubly spin degenerate. We denote both electron and hole spin by the label σ =↑, ↓
keeping in mind however that in GaAs the spin of the electron is sz = ±1/2 whereas the “spin”
of the heavy hole is jz = ±3/2. We assume a single hole in the valence band and a concentration
n of electrons in the conduction band. The charge carriers are coupled through the Coulomb
interaction and the total Hamiltonian is given by

H = H0 + V

=
∑

~kσ

[εc(k)a
†
~kσ
a~kσ

+ εv(k)b
†
~kσ
b~kσ

]

+
1

2

∑

~k~p~qστ

v(q)[a†~k+~qσ
a†~p−~qτa~pτa~kσ

− 2a†~k+~qσ
b†~p−~qτ b~pτa~kσ

], (1.1)

where εc(k) = Eg + k2/2me and εv(k) = k2/2mh are the conduction band and valence band dis-
persions (h̄ = 1), respectively, and v(q) = 4πe2/ε0q is the Coulomb interaction in two dimensions;
ε0 is the background dielectric constant and e is the electron charge.



1.3 Cluster Mean Field Approximation 5

If the momentum dependence of the dipole matrix element rγ is ignored, linear response
theory gives for the optical susceptibility [52],

χ(ω) = 2|rγ |2
∑

12

P (12;ω), (1.2)

where ‘1’ stands for ~k1 and P (12;ω) = 〈〈b−1a1; a
†
2b

†
−2〉〉ω denotes the Fourier transform of the

retarded two-time eh pair propagator,

P (12; t − t′) = 〈〈(b−1a1)(t); (a
†
2b

†
−2)(t

′)〉〉
= −iΘ(t− t′)〈[(b−1a1)(t), (a

†
2b

†
−2)(t

′)]〉. (1.3)

Here, the thermodynamic average is defined by 〈...〉 = Z−1 Tr(e−βH...), with Z = Tre−βH the
partition function, and H = H − µeNe the grand-canonical Hamiltonian. The imaginary part of
χ(ω) determines, apart from a constant factor, the optical absorption Iabs(ω) ∼ −Imχ(ω). The
overall factor of two in front of the sum on the rhs of Eq. (1.2) comes from the spin (see also
below).

Within the simple model (1.1) the calculation of the optical susceptibility χ(ω) reduces there-
fore to a well-defined many-body problem: The calculation of the eh-pair propagator P (12;ω).

1.3 Cluster Mean Field Approximation

1.3.1 General Formalism

In this section we calculate the eh-pair propagator P (12;ω) in the low density regime, where
bound states (exciton, trion) prevail. In this regime it is feasible to exclusively work with two-
time correlation functions and to apply the cluster mean field approximation (CMFA).

Originally, the CMFA was developed to attack many-body problems in nuclear physics and in
plasma physics. [53–55] It rearranges the equations of motion for two-time correlation functions
into an hierarchy of Dyson-type equations and is closely related to the Mori memory function
method, although the mathematical details are quite different. So far, the CMFA has been mostly
used to calculate corrections to the random phase approximation and to investigate in-medium
bound states, for which it is in fact tailor-made. For instance, it has been applied to describe
deuteron-, triton, and α particle formation in expanding hot nuclear matter. [56–59]

Using CMFA techniques [53–55], we can derive a formally exact Dyson-type equation for
the eh pair propagator P (12;ω). Keeping in mind that the spin configurations of the various
correlation functions are fixed, because of the spin-independence of the Coulomb scattering, we
suppress the spin variables and write:

[ω + iη − εc(1) − εv(−1)]P (12;ω) = N(1){δ12 +
∑

3

[M st(13) + δM(13;ω)]P (32;ω)}, (1.4)

with

M st(12) = N−1(1)N−1(2)〈[[b−1a1, V ], a†2b
†
−2]〉, (1.5)

δM(12;ω) = N−1(1)N−1(2)〈〈[b−1a1, V ]; [V, a†2b
†
−2]〉〉ω, (1.6)

N(1) = 〈[b−1a1, a
†
1b

†
−1]〉, (1.7)

where the operator V is defined in Eq. (1.1). The function M(12;ω) = M st(12) + δM(12;ω)
has the meaning of an eh pair self-energy. Thus, Eq. (1.4) is of the Dyson-type. Applying the
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CMFA technique to the correlation function δM(12;ω), and so on, we obtain an hierarchy of
Dyson-type equations for correlation functions with an increasing number of particles. Clearly
this set of equations has to be truncated and it is the truncation which restricts the CMFA to
low CB electron densities.

We now describe in detail a truncation procedure which is valid in the limit of vanishing hole
concentration and for not too high electron densities. [2, 3]

First, we consider the static part M st(12) of the eh pair self-energy. Working out the com-
mutators and taking into account that the VB hole concentration vanishes, we find that M st(12)
contains two terms: (i) the bare electron-hole interaction and the Hartree-Fock corrections to the
single particle energies resulting from the finite density of the CB electrons. Assuming a possive
jellium to compensate for the Hartree term, only Fock terms survive. In first order, the VB hole
energy is then unchanged, while the correction to the CB electron energy is the usual Fock term,
which we simply add to the bare dispersion: ε̃c(1) = εc(1)−

∑

2 v(1−2)f(2), with the CB electron

distribution function f(1) = 〈a†1a1〉.
The vanishing VB hole concentration implies 〈b†1b1〉 = 0, i.e., N(1) = 1− 〈a†1a1〉 = 1− f(1) ≡

f̄(1). The Dyson-type equation for P (12;ω) can therefore be written in a more familiar form:

[ω + iη −Z(1)]P (12;ω)= f̄ (1){δ12−
∑

3

[v(1 − 3)− δM(13;ω)]P (32;ω)}, (1.8)

with Z(1) = ε̃c(1) + εv(−1). Note, without the dynamic part of the eh pair self-energy, i.e. for
δM(12;ω) = 0, Eq. (1.8) describes the propagation of the photo-induced eh pair in the presence
of a rigid CB Fermi sea, which gives rise to the phase-space filling factor f̄(1) and the Fock
correction to the CB electron energy.

The dynamical response of the CB electrons, i.e., the creation of virtual eē pairs, is encoded
in the dynamical (resonating) part of the eh pair self-energy, which, for vanishing VB hole con-
centration, reduces to

δM(12;ω) =
1

f̄(1)f̄(2)

∑

4567

v(5)v(7)

[

R(1, 4, 4 + 5, 5 − 1|2, 6, 6 + 7, 7 − 2;ω)

− R(1 − 5, 4, 4 − 5,−1|2, 6, 6 + 7, 7 − 2;ω)

− R(1, 4, 4 + 5, 5 − 1|2 − 7, 6, 6 − 7,−2;ω)

+ R(1 − 5, 4, 4 − 5,−1|2 − 7, 6, 6 − 7,−2;ω)

]

. (1.9)

We defined an eightpoint eeēh function,

R(1234|5678;ω) = 〈〈b4a†3a2a1; a
†
5a

†
6a7b

†
8〉〉ω, (1.10)

for which, as indicated above, we again derive a Dyson-type equation, symbolically written as
R(ω) = R(0)(ω) + R(0)(ω)[Kst + δK(ω)]R(ω). [Assuming that the spin configuration of the
photogenerated eh pair is (↑↓), the spin configuration of the eeēh cluster defining R is (↑ σσ ↓);
σ is then summed over in Eq. (1.9).] In the low (CB electron) density limit, we need δM(12;ω)
only to o(n). Using an ē-line expansion2 for δM(12;ω), we can show (i) that the term δK(ω)
gives rise to o(n2) contributions to δM(12;ω) and is thus negligible at low densities, and (ii) that,

2This notation is borrowed from Brückners theory of effective interactions in nuclear matter. The ē-line ex-
pansion could be formalized, using a time-independent perturbation expansion with respect to the Hartree-Fock
groundstate, and then systematically applied to construct an hierarchy of Dyson-type equations for two-time cor-
relation functions with an increasing number of particles. We did not pursue it here because the leading equations,
which are the only ones needed in the low density limit, can be obtained by inspection.
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in leading order in the CB electron density, the eightpoint eeēh function appearing in Eq. (1.9)
in fact factorizes into

R(1234 = 3 − 1 − 2|5678 = 7 − 5 − 6;ω) = δ3,7f(3)G3(12|56;ω + ε̃c(3)), (1.11)

with a sixpoint eeh function

G5(12|34;ω) = 〈〈b5−1−2a2a1; a
†
3a

†
4b

†
5−3−4〉〉ω , (1.12)

which satisfies the Dyson-type equation

[ω + iη − Z5(12)]G5(12|34;ω)=I(12|34) +
∑

67

V5(12|67)G5(67|34;ω), (1.13)

with V5(12|67) = [f̄(1)− f(2)]v(7 − 2)δ6,1+2−7 − f̄(1)v(1− 6)δ7,2 − f̄(2)v(2 − 7)δ6,1 and Z5(12) =
ε̃c(1)+ε̃c(2)+εv(5−1−2). Note, the pair-wise interactions within the eeh cluster are independent of
the cluster’s center-of-mass momentum ‘5’, as it should be.3 The groundstate of the eeh cluster
has antiparallel CB electron spin. Focusing on the eeh groundstate, we fix therefore the spin
configuration of the eeh cluster defining G to (↑↓↓). For this spin configuration, I(12|34) =
δ1,3δ2,4f̄(1)f̄(2), and the spin eventually leads to the overall factor of two in Eq. (1.2) for the
optical susceptibility.

Using the factorization (1.11) in (1.9), the dynamical part of the eh pair self-energy becomes

δM(12;ω) =
1

f̄(1)f̄ (2)

∑

456

v(4)v(5)f(6)

[

G6(1, 6 − 4|2, 6 − 5;ω + ε̃c(6))

− G6(1 + 4, 6 − 4|2, 6 − 5;ω + ε̃c(6))

− G6(1, 6 − 4|5 + 2, 6 − 5;ω + ε̃c(6))

+ G6(1 + 4, 6 − 4|5 + 2, 6 − 5;ω + ε̃c(6))

]

. (1.14)

Thus, at low densities, the hierarchy of Dyson-type equations can be truncated at the level of a
sixpoint eeh function and, in leading order in the CB electron density, the optically generated
eh pair is only coupled to an eeh cluster. Note, similar to M st, δM also contains corrections to
the single particle energies. Inserting, e.g., the bare eeh six-point function G(0) into Eq. (1.14)
generates four second order terms, two of which are vertex corrections, while the remaining two
constitute the Born corrections to the VB hole and CB electron energies.

To account for the phase-space filling factors, it is convenient to define reduced Green func-
tions,

P (12;ω) =
√

f̄(1)f̄ (2)P̃ (12;ω), (1.15)

G5(12|34;ω) =
√

f̄(1)f̄ (2)f̄(3)f̄ (4)G̃5(12|34;ω). (1.16)

The Dyson-type equation for the eh pair propagator can then be recast into

∑

3

[(ω + iη−Z(1))δ1,3−M̃ st(13)−δM̃ (13;ω)]P̃ (32;ω)=δ1,2, (1.17)

3For the eeh six-point function G5(12|34) defined in Eq. (1.12), we adopted the convention to explicitly display
the CB electron momenta as arguments, while the momentum of the VB hole is implicitly obtained by the center-
of-mass momentum, given by the subscript, minus the sum of the two CB electron momenta. We use the same
convention for the interaction vertex V5(12|34) and thus have to keep track of the center-of-mass momentum.
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with M̃ st(13) = −
√

f̄(1)f̄(3)v(1 − 3) and δM̃ (13;ω) =
√

f̄(1)f̄ (3)δM(13;ω). Note, the inhomo-
geneity contains no longer phase-space filling factors. Similarly, Eq. (1.13) leads to a Dyson-type
equation for G̃, whose inhomogeneity consists only of Kronecker deltas:

[ω + iη − Z5(12)]G̃5(12|34;ω)=δ1,3δ2,4 +
∑

67

Ṽ5(12|67)G̃5(67|34;ω). (1.18)

The interaction kernel is now given by

Ṽ5(12|34) =
∑

α

Ṽα
5 (12|34), (1.19)

where we introduced channel notation, as is customary in few-body physics. Channel α = I is
the CB electron – CB electron channel (VB hole is free), whereas α = II, III denote the two VB
hole – CB electron channels (one of the CB electrons is free, respectively). Explicitly, for f 2 � 1
the pair-wise interactions read

ṼI
5(12|34) =

√

(f̄(1) − f(2))(f̄(3) − f(4))v(1 − 3)δ3+4,1+2 (1.20)

ṼII
5 (12|34) = −

√

f̄(1)f̄(3)v(1 − 3)δ4,2, (1.21)

ṼIII
5 (12|34) = −

√

f̄(2)f̄(4)v(2 − 4)δ1,3. (1.22)

The inhomogenous integral equation (1.18) can be formally solved using a spectral represen-
tation,

G̃5(12|34;ω) =
∑

n

Ψ5n(12)Ψ∗
5n(34)

ω + iη − Ωn(5)
, (1.23)

with (ortho-normalized) eeh wavefunctions Ψ5n(12) satisfying an in-medium eeh Lippmann-
Schwinger equation:

[Ωn(5) − Z5(12)]Ψ5n(12) −
∑

34

Ṽ5(12|34)Ψ5n(34) = 0. (1.24)

The spectral representation is assumed to comprise bound and scattering states of the eeh cluster.
Equations (1.23) and (1.16) enable us to express the dynamic part of the eh pair self-energy in
an extremely compact form:

δM̃ (34;ω) =
∑

5n

f(5)
Ξ5n(3)Ξ∗

5n(4)

ω + iη + ε̃c(5) − Ωn(5)
, (1.25)

where we defined an vertex function Ξ5n(3). For low enough CB electron density, f 2 � 1 and
the vertex function is given by

Ξ5n(3) =
∑

7

v(5 − 7)
√

f̄(7)[Ψ5n(37) − Ψ5n(7, 3 + 5 − 7)]. (1.26)

All multiple-scattering events within the eeh cluster are now encoded in the (normalized and
complete) momentum-space eeh wavefunction Ψ5n(37). Here, ‘n’ and ‘5’ depict, respectively,
internal quantum numbers and the (center-of-mass) momentum of the (propagating) bound eeh
cluster. Note again, the pair-wise interactions in Eq. (1.24) are independent of the center-of-mass
momentum ‘5’ of the eeh cluster.
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Once Equation (1.24) is solved, the dynamic part of the eh pair self-energy δM̃(12;ω) is fixed.

For a given kernel, [ω+ iη−Z(1)]δ1,3 +
√

f̄(1)f̄(3)v(1− 3)− δM̃ (13;ω), the Dyson-type equation
(1.17) can be solved by standard means, e.g., by matrix inversion. [52] Note, the energy ω enters
only as a parameter. We thus succeeded to reduce the calculation of the optical susceptibility,

which in terms of the reduced eh propagator is given by χ(ω) = 2|rγ |2
∑

12

√

f̄(1)f̄(2)P̃ (12;ω),
to the solution of an in-medium eeh Lippmann-Schwinger equation for an eeh wavefunction Ψ
and the solution of a Dyson-type equation for the eh pair propagator P̃ .

Before we specialize our approach to the extreme dilute limit, where a semi-analytical calcu-
lation of χ(ω) is possible, a few more comments are in order. Equation (1.24) describes an eeh
cluster embedded in a Hartree-Fock medium. The medium gives rise to phase-space filling factors
and to corrections to the CB electron energy. The pair-wise interaction is however still mediated
by the bare Coulomb potential, screening is not accounted for. This is not surprising, since the
lowest order ē-line expansion allows only for one virtual eē pair, whereas screening requires an
arbitrary number of eē pairs. Screening could be however phenomenologically included, without
destroying the mathematical structure of the equations, by simply replacing the bare interaction
v(q) by the statically screened interaction vs(q) = v(q)/ε(ω = 0, q) with ε(ω = 0, q) obtained,
e.g., from Thomas-Fermi-Hückel theory. It is even conceivable to use a more sophisticated static
screening model, based, e.g., on the static plasmon-pole approximation. [52] To be consistent, the
single-particle energies εv and εc should then be modified by the Coulomb-hole and exchange self-
energies. Thus, band-gap renormalization would be also included. A justification of this ad-hoc
approach is however beyond the CMFA and has to be given by techniques based on multi-time
correlation functions. In Section 1.5 a first attempt is made to address this issue from a more
general point of view.

1.3.2 Exciton Representation

As a first step towards a semi-analytical calculation of the optical susceptibility χ(ω), we rewrite
in this subsection the integral equation for P̃ [cf. Eq. (1.17] into a set of linear algebraic equations.
For energies ω close to the exciton groundstate energy EX , the set of equations can be truncated
and then easily solved. Medium corrections are still included. The approach is now however
restricted to energies in the vicinity of the exciton resonance.

It is convenient to split the Dyson equation (1.17) into two coupled integral equations. In-
troducing a free eh pair propagator, P̃ (0)(12;ω) = δ1,2[ω + iη − Z(1)]−1, Eq. (1.17) is equivalent
to

P̃ st(12;ω) = P̃ (0)(12;ω) +
∑

34

P̃ (0)(13;ω)M̃ st(34)P̃ st(42;ω), (1.27)

P̃ (12;ω) = P̃ st(12;ω) +
∑

34

P̃ st(13;ω)δM̃ (34;ω)P̃ (42;ω). (1.28)

The first integral equation is readily solved using again a spectral representation,

P̃ st(12;ω) =
∑

ν

Φν(1)Φ
∗
ν(2)

ω + iη −Eν
, (1.29)

where the (normalized and complete) eh momentum-space wave functions Φν(1) obey an in-
medium eh Lippmann-Schwinger equation (Wannier equation),

[Eν − Z(1)]Φν(1) −
∑

2

M̃ st(12)Φν(2) = 0. (1.30)
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Figure 1.3: Graphical illustration (not a Feynman diagram) of the dynamical part of the exciton self-
energy δM̃X(ω). The full circles denote the exciton-trion coupling constants uX

5T and [uX
5T ]∗.

The solutions of this equation can be obtained numerically using again, e.g., matrix inversion. [52]
The lowest eigenstate is the exciton groundstate with energy EX and wavefunction ΦX .

To approximately solve for ω ≈ EX the second integral equation (1.28), we employ a simple
approximation scheme based on the “exciton representation”, i.e., on a bilinear expansion of P̃ in
terms of the solutions of Eq. (1.30). Writing P̃ (12;ω) =

∑

ν,µ P̃νµ(ω)Φν(1)Φµ(2)∗, we transform
Eq. (1.28) into an infinite set of algebraic equations for the expansion coefficients,

[ω + iη −Eν ]P̃νµ(ω) = δν,µ +
∑

λ

δM̃νλ(ω)P̃λµ(ω), (1.31)

where

δM̃νλ(ω) =
∑

5n

f(5)
uν

5n[uλ
5n]∗

ω + iη + ε̃c(5) − Ωn(5)
, (1.32)

and uν
5n =

∑

1 Φ∗
ν(1)Ξ5n(1). For energies ω close to the exciton groundstate energy EX , we expect

the exciton and trion groundstates to be dominant. Thus, we solve Eq. (1.31) by employing one-

pole approximations: First, we keep only the term corresponding to the exciton ground state
ν = X and neglect the coupling to excited exciton states ν 6= X. Next, assuming that the main
modification of the exciton ground state comes from the groundstate of the eeh cluster, i.e., from
the trion denoted by n = T , we restrict the sum in Eq. (1.32) to the term n = T .

Let us emphasize, the one-pole approximations are by no means mandatory and various
improvements are possible. For example, if the exciton binding energy is small, i.e., if the exciton
groundstate is not well separated from the first excited state, the first excited state has to be
kept. This gives rise to two coupled algebraic equations (two-pole approximation). It is even
conceivable to treat all eh scattering states in a similar way, introducing an “effective” excited
eh state, which carries the spectral weight of the whole continuum. Excited trion states (eeh
scattering states) can be also taken into account by simply extending the sum in Eq. (1.32) to
the respective states or by introducing an “effective” eeh continuum state. The theoretical work
by Esser and coworkers [41] indicates that eeh scattering states are indeed necessary to obtain
good quantitative agreement between theory and experiment.

For the purpose of demonstration, however, we neglect here scattering states and stick to the
simple one-pole approximation described above. The optical susceptibility in the vicinity of the
exciton resonance is then given by

χ(ω) ' 2|sX |2
ω + iη −EX − δM̃X(ω)

, (1.33)

with an exciton self-energy (see Fig. 1.3)

δM̃X(ω) =
∑

5

f(5)
|uX

5T |2
ω + iη + ε̃c(5) − ΩT (5)

, (1.34)
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and an exciton oscillator strength sX = rγ
∑

1

√

f̄(1)ΦX(1). Note, the one-pole approximation is
conceptually close to the T-matrix model considered by Suris and coworkers in their analysis of
absorption and reflection spectra of modulation-doped quantum wells. [42]

Equation (1.33) gives the optical susceptibility χ(ω) for ω ≈ EX . Lowest order medium
corrections such as phase-space filling and Fock corrections to the single particle energies are
included.4 The one-pole approximations restricts however Eq. (1.33) to low enough CB electron
densities, where bound states are well separated from continuum states.

1.3.3 Extreme Dilute Limit

We expect Eq. (1.33) to be valid only for low enough CB electron densities, where the exciton
groundstate is well defined and separated from the eh continuum states. In leading order, CB
electrons do then neither modify the wavefunction nor the energy of bound states (i.e. exciton
and trion). In the following, we ignore therefore Pauli blocking and the Fock correction to the
CB electron energy, i.e., we set f̄ → 1 and ε̃c → εc. It is then possible to obtain the groundstate
of Eq. (1.30) analytically and the groundstate of Eq. (1.24)) variationally. In this regime, CB
electrons are moreover non-degenerate and the Fermi function in Eq. (1.34) can be replaced by
a Boltzmann function parameterized by the CB electron density n. Even this simple approach is
beyond most of the current theoretical investigations concerned with optical properties of weakly
doped quantum wells. An exception is the work of Esser and coworkers. [40, 41]

Measuring energies in units of the 2D exciton binding energy 4R (R is the 3D exciton Rydberg)
and length in units of the 3D Bohr radius aB , we define χ̃(ω̃) ≡ χ(4Rω̃ + Eg)/4R, with ω̃ =
[ω −Eg]/4R, and rewrite the optical susceptibility into dimensionless form5

χ̃(ω̃) =
|sX |2
8R2

1

ω̃ + iη̃ + 1 − δM̃X(ω̃)
. (1.35)

Here, η̃ = η/4R and

δM̃X(ω̃) ≡ δMX(4Rω̃ +Eg)/4R (1.36)

= β̃
MT

MX
(na2

B)|uX
T |2I(ω̃), (1.37)

where β̃ = 4βR, MX = me + mh, and MT = 2me + mh are, respectively, the thermal energy
measured in units of 4R, the exciton mass, and the trion mass. The exponential integral,

I(ω̃) =

∫ ∞

0
dy

e
−β̃

MT
MX

y

ω̃ + iη̃ − ε̃T + y
, (1.38)

where ε̃T = [ΩT (0)−2Eg ]/4R is the energy of a trion at rest, i.e., the internal trion energy, which is
the binding energy of two CB electrons to one VB hole. The dimensionless exciton-trion coupling
constant uX

T finally is given by an integral involving the wave function of the trion groundstate, the
Coulomb interaction, and the wavefunction of the exciton groundstate (see below). For simplicity
we neglected the weak dependence of uX

T on the (center-of-mass) momentum of the trion. Note,
for vanishing CB electron density n, δM̃X(ω̃) → 0 and χ̃(ω̃) describes a single exciton resonance
at ω̃ = −1.

4If one subscribes to the ad-hoc procedure mentioned in the previous section, static screening could be also
accounted for.

5Notice the different usage of the tilde symbol in this subsection. Because medium corrections are now ignored,
no confusion with the reduced Green functions of the previous subsection should result.



12 Charged Excitons in Weakly Doped Quantum Wells [1–3]

To obtain the exciton-trion coupling constant uX
T and the internal trion energy ε̃T , we employ

the variational technique originally used by Stébé and coworkers [35, 36] to calculate various
properties of an isolated trion. For that purpose, we set ET = ΩT − 2Eg, transform Eq. (1.24) to
configuration space6

[T + V ]ΨT (~re1~re2~rh) = ET ΨT (~re1~re2~rh), (1.39)

with kinetic and potential energies (h̄ = 1),

T = − 1

2me
(∆e1 + ∆e2) −

1

2mh
∆h,

V = −e
2

ε0
(

1

|~re1 − ~rh|
+

1

|~re2 − ~rh|
− 1

|~re1 − ~re2|
),

separate away the center-of-mass motion, which is simply a plane wave, and make a variational
Hylleraas Ansatz for the internal part of the trion groundstate wavefunction,

ΨT (s, t, u) = Φ(ks, kt, ku), (1.40)

with

Φ(s, t, u) =
∑

l,n,m

clnm|lnm〉, (1.41)

where |lnm〉 = e−
s
2 sltmun and u, s, and t are Hylleraas coordinates for the internal motion of the

eeh cluster. The scale factor k can be interpreted as the VB hole’s effective charge; it describes the
fact that each CB electron is partially screened from the VB hole by the other CB electron. Note,
since the trion groundstate is a singlet, Φ(s, t, u) has to be an even function in t, that is, m has
to be even. The expansion coefficients clnm and the effective charge k are determined by the Ritz
variational principle, i.e., by minimizing the energy functional E[ΨT ] = 〈ΨT |T+V |ΨT 〉/〈ΨT |ΨT 〉.
The variation yields an eigenvalue problem (for the effective charge k) which is then iteratively
solved. The largest eigenvalue can be related to the trion energy ET (→ ε̃T ), while the associated
eigenfunction can be used to obtain the expansion coefficients clnm for the trion wavefunction.
The details of the calculation are given in the Appendix. With the Hylleraas variational function
ΨT , which we normalize to one, the exciton-trion coupling constant becomes

uX
T =

√

2

Nπ

1

k(1 + σ)

∫ ∞

0
ds

∫ s

0
du

∫ u

0
dt

2π(s2 − t2)u
√

(u2 − t2)(s2 − u2)
e
− s+t

k(1+σ) [
2

s− t
− 1

u
]Φ(s, t, u), (1.42)

where N is the norm of Φ and σ = me/mh.

Before we turn to the discussion of numerical results, we emphasize that we could have
obtained more general expressions for the optical susceptibility had we solved the full in-medium
few-body problems (1.24) and (1.30). Neglecting medium effects turns the in-medium few-body
problems simply into “vacuum few-body problems” which can be easily solved. The CMFA
concept itself is of course more general.

6To solve the eeh problem, we shall use atomic units, which are, however, at the end of the calculation, translated
into the excitonic units adopted in this section.
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Figure 1.4: The spectral function DX(ω̃) for na2
B = 0.008 and 4Rβ = 10. The effective mass ratio

σ = 0.146, corresponding to GaAs, and η̃ = 0.001. The left inset depicts the integrated spectral weight
CX(ω̃), whereas the right inset displays Γ̃X(ω̃) (dot-dashed line) and ∆̃X(ω̃) (solid line). The energy for
which ∆̃X (ω̃) crosses ω̃ + 1 (dotted line) defines the exciton line at ω̃ = −0.94.

1.4 Numerical Results [3]

We present numerical results obtained in the extreme dilute limit, where medium corrections
are negligible and the non-degenerate CB electrons only provide a reservoir for bound state
formation. The assumption of non-degeneracy seriously constrains the temperature and density
range in which our theory is now applicable. Specifically, using the well-known formula, βµe =
log[exp(πnβ/me) − 1], which relates the chemical potential µe of a 2D gas of free electrons
(with mass me) to its density n, we estimate β̃(na2

B) < 1, i.e. depending on the density, the
temperature has to be sufficiently high. We should apply Eq. (1.35) therefore only to densities
and temperatures for which this inequality is satisfied.

Using a 2D 22-term Hylleraas wavefunction (see Appendix), we calculated in Ref. [2, 3] the
optical absorption along the lines explained in the previous subsections. For a mass ratio σ =
me/mh = 0.146, corresponding to GaAs, we found uX

T ' 1.0896 and ε̃T = −1.1151. The binding
energy (in units of 4R) for one electron is therefore W̃T = 0.1151 in agreement with the binding
energies obtained by other means. [38] The vertex uX

T was obtained from Eq. (1.42) by Gaussian
quadrature.

The optical absorption in the vicinity of the exciton resonance is related to the exciton spectral
function

DX(ω̃) = −Imχ̃(ω̃), (1.43)

shown in Fig. 1.4 for na2
B = 0.008 and 4Rβ = 10. The overall structure is in qualitative agreement

with experiments, despite the simplicity of the model and the rather crude approximations.

Below a narrow peak at ω̃ = −0.94, we notice a broad absorption band characterized by
a sharp high energy edge at ω̃ = −1.1151 and a low-energy tail. To facilitate a microscopic
understanding of the absorption features, we plot in the right inset of Fig. 1.4 real and imaginary
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Figure 1.5: The left and right panels show, respectively, trion absorption bands as a function of CB
electron density for a fixed temperature 4Rβ = 10 and as a function of temperature for a fixed CB electron
density na2

B = 0.01. The quasi-exciton line located at ω̃ > −1 is not shown. The effective mass ratio
σ = 0.146, corresponding to GaAs, and η̃ = 0. For clarity absorption bands corresponding to different
parameters are artificially shifted along the vertical axis.

parts of the exciton self-energy: δM̃X (ω̃) = ∆̃X(ω̃) − iΓ̃X(ω̃). The narrow peak is obviously a
consequence of the pole of the spectral function DX(ω̃) at ω̃ = −0.94 ≡ ε̃X , where ε̃X is the
energy which simultaneously statisfies ∆̃X(ε̃X) = ε̃X + 1 and Γ̃X(ε̃X) = 0. A pole in a spectral
function is usually interpreted as a quasi-particle. [61] Accordingly, we attribute the narrow peak
in Fig. 1.4 to a quasi-exciton. We also see, the peak has actually no width. Because of the
one-pole approximation to the eeh problem, Γ̃X(ε̃X) = 0. Had we included eeh scattering states,
Γ̃X(ε̃X) would be finite and the exciton line would have a width.

The origin of the broad absorption band, in contrast, is the itinerant trion. The sharp high
energy edge, for example, comes from a resonance of ∆̃X(ω̃) at the trion formation energy ε̃T =
−1.1151, i.e. the high energy edge of the band corresponds to a trion with momentum zero. The
low energy tail, on the other hand, is due to trion states with finite momenta. Note, due to the
large value of Γ̃X(ω̃) in the vicinity of the edge, trion states with small momentum are significantly
damped. Accordingly, the maximum of the absorption due to the trion is inside the band,
corresponding to the creation of a trion with finite momentum. The maximum coincides with
the high energy edge only for very low CB electron densities, in agreement with the calculations
of Ref. [37]. The spectral weight of the band, however, is then also very small (see Figs. 1.5 and
1.6).

To analyze the spectral weights associated with, respectively, the trion absorption band and
the quasi-exciton line, we show in the left inset of Fig. 1.4 the integrated spectral weight up
to an energy ω̃ defined in terms of the cumulant CX(ω̃) =

∫ ω̃
−∞ dẼDX(Ẽ). As can be seen, the

integrated spectral weight of the trion absorption band corresponds to the plateau value just
below ω̃ = −1, i.e. fT = CX(−1). The inset also demonstrates that the total spectral weight
adds up to one. Accordingly, the spectral weight of the quasi-exciton is given by fX = 1 − fT .
This “sum rule” is a consequence of the one-pole approximations which distribute the spectral
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Figure 1.6: The ratio of the integrated spectral weights fT

fX

as a function of CB electron density and
temperature. The effective mass ratio σ = 0.146, corresponding to GaAs, and η̃ = 0.

weight of the original photo-induced eh pair, which is normalized to one, between the exciton
line and the trion band.7 If scattering states had been taken into account, they would have also
carried spectral weight, i.e., in a complete theory, the combined spectral weight of trion band and
exciton line has to be of course less then one.

Our exploratory calculation neglected scattering states, because, at low enough CB electron
densities, in particular, within the range of validity of our numerical results, scattering states are
expected to carry almost no spectral weight. Indeed, the more refined calculations of Esser and
coworkers [41] seem to verify this assessment. The spectral weight, which can be associated with
scattering states, is less then 5% of the spectral weight of the exciton groundstate. As already
pointed out, scattering states are however important to determine the shape and width of the
exciton line. [41]

We now present a quantitative investigation of the integrated spectral weights as a function
of CB electron density and temperature. To that end, we calculated for various trion absorp-
tion bands the integrated spectral weights fT = CX(−1) and deduced from the “sum rule”,
fX = 1− fT , the corresponding spectral weights for the quasi-exciton. Figure 1.5 depicts typical
trion absorption bands used to obtain the data shown in Fig. 1.6. As expected, for fixed temper-
ature, fT/fX grows with CB electron density because the probability for two CB electrons to be
close enough to a VB hole to form a trion increases. The density dependence is not linear, how-
ever. Instead, we observe an initial fast increase and then a pronounced slowing down indicating
the subtle interplay between trion and quasi-exciton oscillator strength. At higher CB electron
densities, we anticipate an even more complicated behavior. The ratio fT/fX should show non-
trivial features especially for densities close to a critical density, where the trion is expected to
break up into an exciton and a free CB electron. For fixed CB electron density, fT/fX increases
with decreasing temperature. The increase also tends to saturate.

The numerical results are in qualitative agreement with experimental data, despite the sim-

7At this level of sophistication, the lineshape in the vicinity of the exciton resonance is thus a consequence of
the fragmentation of the photo-induced eh pair into a quasi-exciton and a trion.
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Figure 1.7: Optical absorption, i.e. the spectral function DX(ω̃) with ω̃ = (ω − Eg)/4Ry, as a function
of temperature for fixed electron density na2

B = 0.02. The effective mass ratio σ = 0.5, corresponding to
CdTe; Ry is the CdTe Rydberg. To phenomenologically account for ignored scattering processes, we set
the parameter η̃ artificially to the rather large value 0.05. The two insets show the corresponding real
(∆̃X ) and imaginary (Γ̃X) parts of the exciton self-energy δM̃X . The dashed straight line in the inset for
∆̃X is the function ω̃ + 1.

plicity of the quantum well model and the neglect of scattering processes due to impurities and
phonons. Our theoretical approach can be brought more into accordance with observed lineshapes,
if we use the parameter η̃ to simulate ignored scattering processes. The optical absorption in the
vicinity of the exciton resonance aquires then a shape as shown in Fig. 1.7 for the particular case
of na2

B = 0.02, η̃ = 0.05, and an effective mass ratio σ = 0.5, corresponding to CdTe. Figure
1.7 should be compared with Fig. 1.2, in particular with panel (b), although the experimen-
tal conditions (na2

B ≈ 0.03 and β̃ ≈ 250, β̃(na2
B) ≈ 7.5) are admittingly somewhat outside the

range of applicability of what we call “extreme dilute limit”; the temperature is too low for the
electrons to be non-degenerate. Nevertheless, the (qualitative) agreement is encouraging and, if
nothing else, the calculation at least verifies the experimental observation that with decreasing
temperature trion absorption increases on the expense of the exciton absorption.

In most cases, however, typical experimental conditions are clearly beyond the extreme dilute
limit.8 Doping concentrations are usually too high and the effect of the medium on bound state
wavefunctions and energies cannot be ignored. As long as bound states are stable, the optical
susceptibility in the vicinity of the exciton resonance is given by Eq. (1.33), furnished however
with the solutions of the full in-medium eh and eeh Lippmann-Schwinger equations. To obtain
the correct shape of the exciton line it is moreover necessary to include in the calculation of the
exciton self-energy (1.34) eeh scattering states. At least the two-body break-up into an exci-
ton and a CB electron should be incorporated. The solution of the in-medium eeh problem is
computationally challenging. The transformation to configuration space is no longer advanta-
geous because the phase-space filling factors yield a non-local potential. Numerically manageable

8With respect to the experimental data shown in Fig. 1.2, the extreme dilute limit would be applicable to data
between panel (a) and (b) which are unfortunately not available.
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equations in momentum space are obtained by rewriting the in-medium eeh Lippmann-Schwinger
equation (1.24) in Faddeev or Alt-Grassberger-Sandhas (AGS) form. [62] The AGS approach is
moreover well suited for the calculation of eeh scattering amplitudes.

1.5 Beyond the Cluster Mean Field Approximation: An Outlook

1.5.1 The Problem of the Fermi-Edge Signature

In the previous section we presented a detailed description of the CMFA for the optical response
of a weakly n-doped idealized semiconductor quantum well. The CMFA, tailormade for low
CB electron densities, reduces the calculation of the optical susceptibility to the solution of the
Lippmann-Schwinger equations for, respectively, an eh and an eeh cluster, embedded in a Hartree-
Fock medium. The medium is therefore static. This is of course an approximation. In general,
the medium has its own dynamics. Screening of the interaction, e.g., is a dynamic process.
Moreover, beyond the first order Hartree-Fock corrections, single-particle self-energies are also
energy dependent. Thus, a complete description of the optical response has to incorporate vertex
(screening) and single particle self-energy corrections.

Closely connected with vertex and single-particle self-energy corrections is the Fermi-edge
signature at high densities. Physically, the particular absorption or emission lineshape depends
on the interplay of two effects: (i) The final state interaction between the photo-excited VB hole
and CB electron and (ii) the so called “orthogonality catastrophy” discussed by Anderson [63]
and Hopfield. [64] At finite temperature the “orthogonality catastrophy” is not an issue and final
state interactions dominate. We focus therefore on the final state interactions.9

If the Fermi sea is assumed to be rigid, the photo-generated CB electron and VB hole form
a bound state: the Mahan exciton, in contrast to the atomic exciton, formed at vanishing CB
electron density. The Mahan exciton gives rise to a singularity in the optical absorption at
ω = Eg + (1 + me/mh)µe − εb, where εb is the binding energy of the Mahan exciton. If the
constraint of a rigid Fermi sea is relaxed, the Mahan exciton interacts with eē excitations of the
CB electron Fermi sea. As a consequence, the bound state broadens and shifts, producing a
power-law dependence of the optical absorption at the Fermi-edge. [14] The broadening turns out
to be particularly large for small VB hole masses and/or high temperatures. The singularity is
then completely wipped out.

Similar to the theoretical modeling of core level X-ray spectra in metals [18–20], two strategies
have been employed to calculate the power-law dependence of the optical absorption/emission
in doped semiconductors. The first approach goes back to the seminal work by Combescot
and Noziéres (CN approach) [16] and maps the original many-body problem on to an effective
one-body problem. Whereas the second approach due originally to Mahan [14], is a genuine
many-body treatment based on the diagrammatic calculation of the eh propagator, taking not
only parallel (rigid CB electron Fermi sea) but also anti-parallel eh (dynamic response of the
CB electron Fermi sea) channels into account. Shortly after Mahan’s seminal work, Gavoret,
Noziéres, Roulet, and Combescot (GNRC approach) [15] systematized the many-body approach
within a parquet analysis of the eh interaction vertex.

The one-body approach, in one form or another, has been extensively applied to doped quan-
tum wells. [23–27] For the one-body approach to work, it is however necessary to either neglect
the interaction between CB electrons or to treat it in a mean field approximation. The latter
is generally expected to be sufficient at high doping concentrations, although the Fermi liquid

9Formally, the “orthogonality catastrophy” is remedied by the VB hole self-energy. A description of the final
state interactions which obeys Ward identities should therefore automatically cure the “orthogonality catastrophy”.
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Figure 1.8: CB electron (a) and VB hole (b) self-energy at vanishing VB hole density, expressed in terms
of the bare (empty box) and full (dashed box) vertices. The internal lines are fully dressed CB electron
(full line) and VB hole (dashed line) propagators. The vertices are direct vertices in the particle-particle
channel, with the incomming lines attached to the bottom and the lower left (right) leg connected to the
upper left (right) leg (see also Fig. 1.9).

arguments usually invoked might not be straightforwardly applicable to low-dimensional systems
such as doped quantum wells. At low doping concentration, however, the model of non-interacting
CB electrons must fail. The clear signature of charged excitons at low-to-intermediate densities
demonstrates that the interaction between CB electrons cannot be neglected or treated in a
mean field manner. Otherwise the trion wavefunction and energy would be completely wrong.
The low-density regime is therefore beyond the one-body approach.

A theoretical examination of the optical response of a doped quantum well, which attempts
to cover the whole doping concentration range, has to avoid the mapping on to an effective one-
body model. In this subsection, we adopt therefore the many-body point of view and extend the
GNRC approach to the two-band model (1.1). Our goal is to derive, within the framework of a
two-band parquet analysis of the ee and eh interaction vertices, a minimal set of equations, which
gives the Fermi-edge signatures at high densities and the double-peak structures due to charged
and neutral excitons at low densities. Within the two-band parquet analysis, the two eh channels
(parallel and antiparallel) as well as the screening of the Coulomb interaction are automatically
included. The main task is to incorporate eeh correlations. This section should be understood as
an exploration into an almost impassable terrain (“parquet plus bound states”). The proposed
equations have to be further analyzed and perhaps simplified before a numerical solution can be
attempted.

In contrast to the previous section we now employ multi-time correlation functions. Four-point
functions depend now on three time variables, or, in energy space, on three energies. We work
in Matsubara space and use a four-vector notation k = (~k, iωn) and define

∑

k = −(1/β)
∑

iωn,~k
.

An exact expression for the (linear) optical susceptibility is given by (factor two comes from the
spin)

χ(q) = 2|rγ |2
∑

k

G↑(k)G↓(q − k)

+ 2|rγ |2
∑

k,r

G↑(k)G↓(q − k)(Γeh)↑↓(k, r; q)G↑(r)G↓(q − r), (1.44)

where the function (Γeh)↑,↓ is the connected part (viz. interaction vertex) of the (optically active)
eh four-point function and Gσ(r) and Gσ(r) are the fully dressed electron and hole propagators,
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respectively. At vanishing VB hole density, the electron self-energy,

Σe,σ(k) = Σd
e,σ(k) + Σx

e,σ(k) , (1.45)

contains a direct part,

Σd
e,σ(k) = −

∑

r,σ′

(ΓeeGG ? Γ(0)
ee )σ,σ′(k, k; r)Gσ′ (r − k) , (1.46)

where we neglected the Hartree term, which we assume to be compensated by a positive jellium,
and an exchange part,

Σx
e,σ(k) =

∑

r

(Γ(0)
ee )σ,σ(k, r − k; r)Gσ(r − k) (1.47)

+
∑

r

(ΓeeGG ? Γ(0)
ee )σ,σ(k, r − k; r)Gσ(r − k) . (1.48)

The hole self-energy contains at vanishing VB hole density only a direct term

Σh,σ(k) = Σd
h,σ(k) = −

∑

r,σ′

(ΓehGG ? Γ
(0)
eh )σ,σ′(k, k; r)Gσ′ (r − k) . (1.49)

In Eqs. (1.46) – (1.49) we anticipated the channel notation introduced below. The operation
? denotes here the chaining operation which generates either electron-electron or electron-hole
ladders (see Fig. 1.8). The functions (Γee)σ,τ and (Γeh)σ,τ denote, respectively, the fully dressed

ee and eh interaction. The bare interactions are given by (Γ
(0)
ee )σ,τ = (Γ

(0)
eh )σ,τ = v, with v the

Coulomb potential in two dimensions. Equation (1.44) gives the optical susceptibility for complex
(Matsubara) energies. The optical absorption has to be obtained via analytical continuation in
the usual way. Symbolically, Iabs(ω) ∼ −Imχ(~q = 0, iνm → ω − µe + iη), but technically the
analytical continuation has to be performed numerically, e.g., with a Padé approximant.

From Eqs. (1.44) – (1.49) it is clear, the fully dressed interaction vertices (Γeh)σ,τ and (Γee)σ,τ

must be the central objects of any microscopic calculation of the optical susceptibility. In this
section we shall discuss various approximations for (Γee)σ,τ and (Γeh)σ,τ . We do not always write
the spin index, assuming then that the approximations are implemented in accordance with the
restrictions enforced by the spin. Moreover to obtain a closed set of equations, we always assume
that the full interaction vertices in the single-particle self-energies are replaced by the approximate
ones.10

1.5.2 Parquet Analysis

The parquet analysis is a sophisticated diagrammatic method to perform vertex renormalizations
of Feynman diagrams. As a result, one obtains the parquet equations, which are for the interac-
tion vertex what the Dyson equation is for the Green function. The Dyson equation determines
the fully dressed, one-line reducible two-point function (Green function) in terms of a one-line
irreducible two-point function (self-energy). Similarly, the parquet equations express the fully
dressed, two-line reducible connected11 four-point function (interaction vertex) in terms of a two-
line irreducible four-point function. Approximations are then made in the two-line irreducible

10This raises deep questions about conservation laws, which, at this point, we do not address. We tacitly assume
that, in principle, the approximations we are going to develop can be made conserving.

11We consider only connected four-point functions and suppress the label “connected” from now on.
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k’, q-k’,
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(3) (4)

X(k,k’;q)=i, j x−β

i j

i j

Figure 1.9: Generic four point function. By convention, we work exclusively with direct diagrams in
the particle-particle channel, with incoming lines at the bottom. As indicated by the dashed lines, the
left (right) lower leg is always connected to the left (right) upper leg. Since the direction of the lines is
fixed, we suppress arrows giving this information. For the definition of the three channels 12, 13, and
14, respectively, it is convenient to imagine the labeling of the four external legs as shown in parentheses.
The labels i and j enclose the band index (e, h) and the spin index (↑, ↓). The four momentum q denotes
the “center-of-mass” variables, whereas the four-momentum k (k′) specifies the left incoming (outgoing)
particle.

block. The diagrammatic method works form the start with one-line irreducible diagrams. Prop-
agators are thus assumed to be fully dressed and to satisfy the Dyson equation. A closed set of
equations is then trivially obtained, if the self-energy in the Dyson equation is expressed in terms
of the interaction vertex as in Eqs. (1.45) – (1.49). If, in addition, the interaction vertices (except
the zeroth order term) in the two-line irreducible block of the parquet equations are replaced by
fully dressed interaction vertices, an expansion emerges, in which only dressed propagators and
dressed vertices appear (skeleton expansion).

More specifically, the parquet equations are the result of the crossing symmetric summation
of all two-line reducible diagrams, which can be generated from an arbitrary set of two-line
irreducible diagrams. [65–68] The essential bookkeeping device is the classification of two-particle
diagrams according to three inequivalent channels. Each channel defines a two-line reducibility,
i.e., a way, how, by cutting two lines, a two-particle diagram falls apart into two disconnected
pieces. We label the three channels by 12, 13, and 14. For example, an arbitrary diagram with
four external legs (see Fig. 1.9) is 12 reducible (irreducible), if, by cutting two internal lines, it
can (cannot) be separated into two pieces, such that one piece contains the external legs 12.12

The definitions with respect to the 13 and 14 channels are analogous.

In this subsection we perform a two-band parquet analysis taking electron-electron and electron-
hole interaction into account. We initially treat CB electrons and VB holes on an equal footing,
taking only advantage of the vanishing VB hole concentration, which means that diagrams with
closed VB hole lines are negligible. For a diagrammatic representation of the mathematical expres-
sions, we adopt the Lande-Smith language [65,66], which exclusively works with direct four-point
functions in the particle-particle channel (12 channel), a generic representative of which is shown
in Fig. 1.9. The four-point functions are matrices in the band index (e,h) and the spin index
(↑, ↓). If not noted otherwise, the indices i and j enclose both.

With each channel attached is a certain number of chaining operations. They are shown in
Fig 1.10. Any (direct) two-line reducible diagram can be constructed from them. The internal
propagators are for simplicity denoted in unison by solid lines, although, depending on the external
labels of the composite diagram, they can be both CB electron and VB hole propagators. The
internal pair states (propagators) in each channel have to be chosen in accordance with three
rules: Firstly, VB holes and CB electrons have to be conserved at each vertex. Secondly, because

12In the language of Ref. [67], a 12 reducible (irreducible) diagram is 12 non-simple (simple).
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Figure 1.10: The five chaining operations (?, �, ◦, . and /) in the three channels (12, 14, and 13). The
labels i and j denote “internal quantum numbers” such as spin and band indices. The mathematical
expressions are given in Eq. (1.50)–(1.54). Recall, we work with direct particle-particle vertices, with
incoming lines attached to the bottom of the vertices. The direction of lines is thus fixed and arrows giving
this information are not shown.

of the vanishing VB hole density, no closed VB hole lines are allowed. Thirdly, in addition to
the conventions given in Fig. 1.9, VB hole lines are always attached to the right side of an
electron-hole vertex, whereas CB electron lines are attached to the left.

Each chaining operation corresponds to a particular convolution of the internal variables.
Mathematically, the diagrams in Fig. 1.10 read

(XGG ? Y )ij(k, k
′; q) =

∑

r

Xij(k, r; q)Gi(r)Gj(q − r)Yij(r, k
′; q) , (1.50)

(XGG � Y )ij(k, k
′; q) =

∑

r

Xij(k, k + r − q; k − k′ + r)Gi(k + r − q)

× Gj(r − k′)Yij(k + r − q, k′; r) , (1.51)

(XGG ◦ Y )ij(k, k
′; q) = −

∑

r,l

Xil(k, k
′; r)Gl(r − k′)Gl(r − k)

× Ylj(r − k′, r − k; q + r − k − k′) , (1.52)

(XGG / Y )ij(k, k
′; q) =

∑

r

Xii(k, k − r; k + k′ − r)Gi(k − r)

× Gi(k
′ − r)Yij(k − r, k′ − r; q − r) , (1.53)
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(b)

(c) (d)

(a)

(f)

Figure 1.11: Lowest order diagrams generated by the five chaining operations: (a) particle-particle ladder
(?, channel 12), (b) particle-hole ladder (�, channel 14), (c) particle-hole bubble (◦, channel 13), (c) left
vertex correction (/, channel 13), and (d) right vertex correction (., channel 13). Note, in the two-band
model, a “particle” (“hole”) can be either a forward (backward) running CB electron line or a forward
(backward) running VB hole line.

(XGG . Y )ij(k, k
′; q) =

∑

r

Xij(k, k
′; k + k′ − r)Gj(k − r)

× Gj(k
′ − r)Yjj(k − r, q − k′; q − r) . (1.54)

Lande and Smith have shown how the parquet summation for the interaction vertex can be
performed with direct four-point functions and the five chaining operations ?, �, ◦, /, and .. [65]
Their crucial observation was that the chaining operations satisfy generalized associativity re-
lations, which ensure that each permitted diagram is generated only once. Technically, they
defined particular classes of two-line reducible diagrams (in the 12, 13 and 14 channel, respec-
tively), proved that they are disjunct, and finally showed that any diagram one might think of
is included in the sum of the two-line reducible blocks which can be generated from the (com-
plete) two-line irreducible block. With the matrix structure introduced in Fig. 1.9, we can adopt
the Lande-Smith approach to a two-band semiconductor. As a result, the fully dressed direct
interaction vertex is given by

Γ = Γ0 + ΓGG / Γ0 + Γ0GG . Γ + ΓGG / Γ0GG . Γ (1.55)

Γ0 = I +K12 +K13 +K14 (1.56)

K12 = (Γ −K12)GG ? Γ (1.57)

K14 = (Γ −K14)GG � Γ (1.58)

K13 = (Γ0 −K13)GG • Γ0 , (1.59)

where XGG•Y = XGG◦Y +XGG◦(ΓGG/Y ) is the dressed bubble operation. The first term on
the rhs of Eq. (1.56) denotes the two-line irreducible block. It contains the bare interaction Γ(0)

and an infinite number of additional diagrams. Equations (1.55) – (1.59) are exact as long as all

two-line irreducible diagrams are included in the block I. They become approximate only, when
we replace I by a subclass of two-line irreducible diagrams, for instance, by the bare interaction
Γ(0). Depending on the external labels, Eqs. (1.55) – (1.59) determine Γee and Γeh, with the
internal propagators chosen in accordance to the three rules given above.

In Fig. 1.11 we show the lowest order diagrams generated by the five chaining operations. The
operations ?, �, ◦ create particle-particle ladders, particle-hole ladders, and particle-hole bubbles,
respectively, where a particle (hole) can be both a CB electron (CB hole) and a VB hole (VB
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electron). They are the “standard” partial summations. For instance, exciton formation is
burried in the particle-particle channel while screening is the result of the bubble diagrams. The
remaining two operations, / and ., give rise to left and right vertex corrections, respectively.
Although vertex corrections have to be included to ensure that all diagrams are accounted for,
we will in the following for simplicity ignore them. It cannot be rigorously justified, has however
the advantage that each channel is then uniquely defined by one explicit chaining operation.13

Without vertex corrections Γ = Γ0 = I +K12 +K13 +K14. It is then possible to define 12, 13,
and 14 irreducible blocks, Γ12 = Γ −K12, Γ13 = Γ −K13, and Γ14 = Γ −K14, and rewrite Eqs.
(1.55) – (1.59) in a more familiar form:

Γ12 = I + Γ13GG ◦ Γ + Γ14GG � Γ , (1.60)

Γ13 = I + Γ12GG ? Γ + Γ14GG � Γ , (1.61)

Γ14 = I + Γ12GG ? Γ + Γ13GG ◦ Γ , (1.62)

with Γ given by either one of the three (at this level equivalent) Bethe-Salpeter equations,

Γ = Γ12 + Γ12GG ? Γ , (1.63)

Γ = Γ13 + Γ13GG ◦ Γ , (1.64)

Γ = Γ14 + Γ14GG � Γ . (1.65)

We first consider the (simplified) parquet equations (1.60) – (1.62) for the ee vertex. Fixing
the external legs as CB electrons and chosing the internal lines accordingly, we find in the limit
of vanishing VB hole concentration the following set of equations:

(Γ12
ee)στ = (Iee)στ + (Γ13

eeGG ◦ Γee)στ + (Γ14
eeGG � Γee)στ , (1.66)

(Γ13
ee)στ = (Iee)στ + (Γ12

eeGG ? Γee)στ + (Γ14
eeGG � Γee)στ , (1.67)

(Γ14
ee)στ = (Iee)στ + (Γ12

eeGG ? Γee)στ + (Γ13
eeGG ◦ Γee)στ , (1.68)

(Γee)στ = (Γ13
ee)στ + (Γ13

eeGG ◦ Γee)στ , (1.69)

(Iee)στ = (Γ(0)
ee )στ + (Ree)στ , (1.70)

The first three equations determine that part of the ee interaction, which is irreducible in the
indicated channel. The fourth equation is the Bethe-Salpeter equation (in the 13 channel) from
which the full ee vertex can be obtained. As long as the full set of equations is considered, the
Bethe-Salpeter equation can be written in any one of the three channels. The last equation collects
all diagrams irreducible in all three channels. The functional Iee contains the bare electron-

electron interaction Γ
(0)
ee and a complicated rest (see below). Note the absence of processes with

internal VB hole lines. Diagrams with antiparallel internal VB hole lines are negligible because of
the vanishing VB hole concentration. Whereas diagrams with parallel internal VB hole lines or
a single intermediate VB hole line do not contribute because they violate particle conservation.

The parquet equations for the eh vertex can be obtained by fixing the left (right) external
legs as CB electrons (VB holes) and chosing the internal lines accordingly. They have a similar

13Usually, parquet equations are written in terms of symmetrized vertices (Hugenholtz representation); direct
and exchange diagrams are thus treated simultaneously. [67] Vertex corrections in the sense of Lande and Smith do
then not occur and each channel is specified by a single chaining operation. However, because exchange diagrams
can mix channels, the danger of overcounting is then pertinent and requires properly defined symmetry factors.
In the parquet context, the issue of overcounting has been only addressed by Lande and Smith. They found
working with direct diagrams more suitable to ensure that every permissable diagram is counted exactly once. The
drawback is that the 13 channel comes then with three chaining operations: the bubble operation and the two
vertex corrections.
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structure, except that the vertex Γ13
eh is not required. This is again a consequence of the vanishing

VB hole concentration. Thus, the eh vertex satisfies

(Γ12
eh)στ = (Ieh)στ + (Γ13

eeGG ◦ Γeh)στ + (Γ14
ehGG � Γeh)στ , (1.71)

(Γ14
eh)στ = (Ieh)στ + (Γ13

eeGG ◦ Γeh)στ + (Γ12
ehGG ? Γeh)στ , (1.72)

(Γeh)στ = (Γ12
eh)στ + (Γ12

ehGG ? Γeh)στ , (1.73)

(Ieh)στ = (Γ
(0)
eh )στ + (Reh)στ . (1.74)

As in the ee sector, the first two equations construct, respectively, that part of the eh vertex,
which is irreducible in the indicated channel. The third equation is the Bethe-Salpeter equation,
from which the full eh vertex is obtained. The Bethe-Salpeter equation is written in the 12
channel. The functional Ieh finally denotes the class of diagrams irreducible in all three channels.

As in the case of electron-electron interaction, it contains the bare interaction vertex Γ
(0)
eh and a

complicated rest Reh.
The functionals Rij depend on the fully dressed interaction vertices Γij. It is impossible to

give an exact expression for Rij and diagrams contributing to Rij have to be selected according
to physical considerations. Usually Rij is neglected. Equations (1.66) – (1.74) for the interaction
vertices together with Eqs. (1.45) – (1.49) for the single particle self-energies are then the starting
point, from which various standard two-particle approximations can be derived. The equations
contain, e.g., parallel and anti-parallel eh channels as well as an eē channel. The eh channels yield
the power-law dependencies of the optical response while the latter describes screening. Thus,
suitable reduction procedures yield either the equations used by Gavoret and coworkers [15] to
study the Fermi-edge singularity (GNRC approach) or the screened ladder approximation for the
eh vertex [12, 13], which is the workhorse of the modern theory of semiconductor optics. [52]

Without the residual part Rij, Eqs. (1.66) – (1.74) contain only two-particle correlations. For
doped bulk semiconductors this is sufficient. For a doped quantum well, however, the existence
of charged excitons, i.e., bound states comprising three particles, suggests that the summation of
two-particle channels is not enough. Three particle correlations have to be incorporated. From
the structure of the Eqs. (1.66) – (1.74) it is clear that three particle correlations can be only
included in Rij. Thus, any theoretical description of the optical response of (low-dimensional)
doped semiconductor structures, which tries to cover the whole density range, from bound state
dominated low to Fermi-edge dominated high densities, has to be on a par with a parquet theory,
which, in addition to the various ee and eh channels, takes also eeh correlations into account.

To include three particle correlations, we now consider Reh, the lowest order diagrams of which
are shown in Fig. 1.12.14 The block Reh is at least fourth order in the fully dressed interaction
vertices and involves at least six internal propagators. From experiments we know that at low
densities correlations between two CB electrons and one VB hole are very important, eventually
giving rise to a three particle bound state. To account for this fact, we suggest to include in
Reh all multiple scattering processes between the intermediate two CB electrons and VB hole as
symbolized by the thin stripes in Fig. 1.12. Because of the vanishing VB hole density, the VB
hole propagator passes through the diagrams in Fig. 1.12 without being able to form a closed
loop. Separating the processes shown in Fig. 1.12 from the rest, the complete irreducible eh
interaction Ieh can be written as

Ieh = Γ
(0)
eh +RT

eh[Γee,Γeh] + δReh[Γee,Γeh], (1.75)

14For drawing purposes we attached the external lines to the vertices, which are now denoted by circles instead
of boxes, freely. To obtain the mathematical expressions the diagrams have to be redrawn using the notation and
conventions introduced in Fig. 1.9.
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Figure 1.12: Three particle correlations considered in Reh.
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Figure 1.13: Complete irreducible eh vertex, Ieh, with eeh correlations separated off. To indicate that
the leftmost internal line in the second diagram on the rhs is a backward running CB electron line, we
explicitly attached an arrow to this line. The remaining lines are, in accordance with our conventions,
upward running.

where we explicitly indicated the dependencies of the functionals RT
eh and δReh on the full inter-

action vertices.

In Fig. 1.13 we give a graphical representation of Eq. (1.75). The block denoted by T
contains the correlated propagation of an eeh cluster. In the simplest approximation, it sums
a three-particle eeh ladder, with pair-wise interactions mediated by the full interaction vertices
Γee and Γeh, respectively. The other two blocks denote appropriately defined eh–ēeeh interaction
vertices, containing two pair interaction vertices and one internal line. The functional δReh

comprises the remaining diagrams.

The topological structure of the lowest order contributions to the functional Ree is the same
as in Fig. 1.12, except that the external and internal lines are different because of particle
conservation. VB hole propagators can now only appear in the form of closed loops, which are
however negligible for vanishing VB hole density. Thus, all internal lines in Ree are CB electron
lines; eeh correlations cannot appear at all. Since there is moreover no experimental evidence
of correlations between more than two internal electron lines, we ignore Ree. Eventually, we
even completely shortcut the ee parquet equations and replace the ee vertices in the eh parquet
equations by the screened ee interaction.
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1.5.3 Minimal Set of Equations

Obviously the full parquet equations (1.66) – (1.74) are extremely complicated. In this subsection
we therefore look for simplifications, guided by well established approximations and the additional
needs dictated by experimental findings. We anticipate an iterative process to solve the parquet
equations, that is, a process which replaces the vertices on the rhs of the parquet equations
by the vertices of the lhs.15 There are various ways to go through this procedure. Chosing a
particular strategy biases the iteration in the sense that, e.g., the screening in the 13 channel of
the ee sector is build up “faster” then let say the correlations in the 12 channel of the eh sector.
Simplifications arise through the particular manner, in which the replacements are performed
and, most importantly, through a suitable truncation of the iteration process. The “in-complete”
iteration corresponding then to the summation of a selected class of diagrams.

First, we simplify the ee sector. Our goal is to extract, through an appropriate iterative
procedure, an approximate expression for Γ13

ee , which is the ee vertex needed in the eh sector
[cf. Eq. (1.71)–(1.74)].16 The most important channels in the ee sector are the anti-parallel
channels, because they contain the collective excitations of the CB electron Fermi sea responsible
for screening. Accordingly, we ignore Eq. (1.66) and consider Eqs. (1.67) – (1.70) with Γ12

ee = 0.
The first step is to replace Γee on rhs of Eqs. (1.67) and (1.68) by Γ13

ee and Γ14
ee , respectively. We

then obtain two coupled equations,

Γ13
ee = Iee + Γ14

eeGG � Γ13
ee , (1.76)

Γ14
ee = Iee + Γ13

eeGG ◦ Γ14
ee , (1.77)

for the two vertices Γ13
ee and Γ14

ee . To decouple these two equations, we now replace on the rhs of

Eqs. (1.76) and (1.77), Γ14
ee → Iee → Γ

(0)
ee and Γ13

ee → Iee → Γ
(0)
ee , respectively. As a result, we find

Γ13
ee = Γ(0)

ee + Γ(0)
ee GG � Γ13

ee , (1.78)

Γ14
ee = Γ(0)

ee + Γ(0)
ee GG ◦ Γ14

ee . (1.79)

The integral equation for Γ13
ee can be formally solved to yield

V S
ee ≡ Γ13

ee = [1 − Γ(0)
ee GG]−1

� Γ(0)
ee , (1.80)

where we introduced V S
ee to denote the screened ee interaction in the 13 channel. Note, Eq. (1.78)

is an integral equation in the 14 channel. The screening of the 13 irreducible ee interaction is thus
performed by eē excitations in the 14 channel, that is, by eē ladders. Although the replacements
might at first sight seem arbitrary, we emphasize that they correspond to the first few steps in
an appropriate iterative process to solve the full ee parquet equations.

We now turn to the parquet equations in the eh sector. First, we replace in Eqs. (1.71) –
(1.74) Γ13

ee by V S
ee. Neglecting δReh in Ieh yields then a minimal set of equations,

Γ12
eh = Ieh + V S

eeGG ◦ Γeh + Γ14
ehGG � Γeh, (1.81)

Γ14
eh = Ieh + V S

eeGG ◦ Γeh + Γ12
ehGG ? Γeh, (1.82)

Γeh = Γ12
eh + Γ12

ehGG ? Γeh, (1.83)

Ieh = Γ
(0)
eh +RT

eh[V S
ee,Γeh], (1.84)

15The self-energies of the internal propagators are assumed to contain the vertices of the previous iteration step.
16In principle, Reh contains the full ee vertex. Thus, in a complete crossing symmetric theory, all three ee

channels should be in fact considered. We anticipate however to short-cut the ee sector and to replace all ee
interactions in Reh by a screened 13 channel ee interaction.
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which, augmented by Eqs. (1.45) – (1.49) for the single-particle self-energies (with Γee → V S
ee),

contains, at least in principle, the most important physical processes affecting the optical response
of doped semiconductors. They determine the full eh vertex Γeh and the propagators G and G
required to calculate the optical susceptibility χ(q) from Eq. (1.44). The optical response on
the real energy axis is then obtained via analytical continuation. The optical absorption, e.g., is
given by Iabs(ω) ∼ −Imχ(~q = 0, iνm → ω − µe + iη).

The physical content of the Eqs. (1.81) – (1.84) is particularly transparent. The first two equa-
tions determine, respectively, the irreducible eh interaction in the parallel (12) and anti-parallel
(14) eh channel required to obtain the correct power-law dependence of the Fermi-edge signature,

supplemented by the screening channel (13). For V S
ee = 0 and Ieh → Γ

(0)
eh , these two equations re-

duce to the GNRC equations. Keeping V S
ee, the second term on the rhs of Eqs. (1.81) and (1.82),

respectively, describes the screening of the eh interaction. Note, because of the vanishing VB hole
concentration screening is due exclusively to CB electron bubbles (13 channel). The possibility of
charged exciton formation is included in RT

eh, where eeh correlations are explicitly taken into ac-
count. The full eh vertex, required to calculate the optical susceptibility, is finally obtained from
the Bethe-Salpeter equation (1.83). The single particle propagators are fully dressed. To obtain
a closed set of equations, the exact interaction vertices in the single-particle self-energies have to
be replaced by the approximate ones, which provokes questions about conistency and conserva-
tion laws. Pragmatically, one would be tempted to replace the single-particle propagators by an
appropriate quasi-particle approximation (static single-particle self-energies) which is consistent
with the approximate eh interaction vertex used in the calculation of the optical susceptibility.
Only a numerical solution can show, however, whether this strategy gives meaningful results.

To resume the discussion up to this point, we applied a systematic dynamic vertex renormal-
ization procedure (parquet analysis) to derive a minimal set of equations (1.81–1.84) for the eh
vertex needed for the calculation of the optical susceptibility of a n-doped quantum well. The
goal was to obtain equations which contain screening, the two eh channels required for the cor-
rect description of the Fermi-edge signature at high densities, and the three particle correlations
needed to capture trion formation at low densities. The equations have not yet been fully an-
alyzed. We believe however that they constitute a promising starting point for the calculation
of the optical response at arbitrary doping concentration. With suitable simplifications, their
numerical solution should be within the reach of modern algorithms and computing power.

Let us finally consider a situation, where the Fermi-edge singularity is smeared out and is
of no concern. This is the case, when the VB hole is rather mobile and/or the temperature is
rather high. It is then sufficient to confine the theoretical treatment to one eh channel, e.g., the
12 channel. The resulting truncated set of equations,

Γ12
eh = Ieh + V S

eeGG ◦ Γeh, (1.85)

Γeh = Γ12
eh + Γ12

ehGG ? Γeh, (1.86)

V S
ee = Γ(0)

ee + Γ(0)
ee GG � V S

ee, (1.87)

Ieh = Γ
(0)
eh +RT

eh[V S
ee,Γeh], (1.88)

can be used to construct a generalized CMFA.

Towards that end, we first replace, again in the spirit of a truncated iteration process, on the
rhs of Eq. (1.85) the full vertex Γeh by Γ12

eh. Using furthermore Eq. (1.88), we find for the 12
irreducible eh vertex an integral equation,

Γ12
eh = Γ

(0)
eh +RT

eh + V S
eeGG ◦ Γ12

eh, (1.89)
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which can be formally solved to yield

Γ12
eh = V S

eh + R̃T
eh, (1.90)

with a screened eh interaction,

V S
eh = [1 − V S

eeGG]−1
◦ Γ

(0)
eh , (1.91)

and a residual term,

R̃T
eh = [1 − V S

eeGG]−1
◦ RT

eh[V S
ee,Γeh], (1.92)

which contains the eeh correlations. Note, Eq. (1.91) is an integral equation in the 13 channel.
Thus, eē bubbles are responsible for the screening of the eh interaction, which is nothing but the
random-phase approximation for Γ12

eh.

We now replace in RT
eh (and in the single-particle self-energies) the full eh vertex Γeh by V S

eh.
As a result, Eq. (1.90) specifies the 12 irreducible vertex Γ12

eh in terms of the screened ee and the
screened eh interaction. Through the Bethe-Salpeter equation (1.86), the full eh vertex Γeh is
then only a functional of the screened interactions.

The 12 irreducible eh vertex Γ12
eh is the sum of two parts: V S

eh and R̃T
eh. At low densities,

where screening and phase-space filling are negligible, we expect R̃T
eh to contain a pole due to

an eeh bound state (trion). Thus, R̃T
eh gives an important contribution to Γ12

eh and hence to the
full vertex Γeh. At high densities, on the other hand, screening and Pauli blocking prevents the
formation of bound states and R̃T

eh should have a minor effect on Γ12
eh. As a result, the full eh

vertex Γeh should be basically given by the screened ladder approximation.

To facilitate a comparision with the original CMFA approach, we define a generalized eh pair
propagator (which depends on three energies). Symbolically, we write

P = P(0) + P(0)ΓehP(0), (1.93)

with P(0) = GG and Γeh the full eh vertex. Using the Bethe-Salpeter equation (1.86) together
with Eq. (1.90), we obtain an intergral equation for P,

P = P(0) + P(0)[V S
eh + R̃T

eh]P, (1.94)

where Γ12
eh = V S

eh + R̃T
eh appears as a kernel. Although this equation has the formal structure of a

Dyson-type equation, it is crucial to recall that the four point functions depend on three energy
variables. Nevertheless, it is instructive to contrast Eq. (1.94) with Eq. (1.4), which we recast
for that purpose into

P = P (0) + P (0)[M st + δM ]P. (1.95)

Clearly, V S
eh and R̃T

eh play the roles of M st and δM , respectively. We suspect therefore that
suitable Shindo-type approximations [12, 13], which eliminate two of the three energy variables
in Eq. (1.94), would enable us to derive a generalized CMFA for a reduced eh pair propagator,
depending only on one energy variable, but still accounting for screening, single-particle self-
energy corrections beyond first order, and three-particle correlations. In that way, the CMFA
philosophy of “embedding few-body clusters in a medium” could be perhaps extended to arbitrary
densities.
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1.6 Concluding Remarks

In this chapter we dicussed the optical response of a doped quantum well. We primarily focused
on the optical absorption due to exciton and trion formation, conceptualizing the trion as an
itinerant excitation formed in the course of the dynamical response of CB electrons to the photo-
generated VB hole. Within this approach the trion enters the optical response through the eh
pair self-energy. We also emphasized the close connection between trion formation at low doping
and Fermi-edge signatures at high doping.

To incorporate trion formation in the optical response of a weakly doped quantum well, we
adopted the CMFA. The CMFA reduces the calculation of the eh pair propagator to the solution
of an in-medium eh and an in-medium eeh Lippmann-Schwinger equation. Medium corrections,
such as Pauli blocking and the Fock corrections to the CB electron self-energy, are included.
Screening however cannot be systematically accounted for. As a consequence, the CMFA can be
only used at low enough CB electron densities. As far as the numerical results are concerned,
we focused on the extreme dilute limit, where medium corrections can be ignored altogether and
excess carriers only provide a reservoir for bound state formation. Even this simple approximation
goes beyond earlier investigations because it enables us to treat neutral and charged excitons on an
equal footing. The overall structure of the calculated absorption is consistent with experimental
data. The numerical implementation does not capitalize the full potential of the CMFA. One of
the future research directions is therefore the calculation of the optical susceptibility with medium
corrections taken into account, that is, to find the solutions of the full in-medium bound state
problems and use it in the optical susceptibility calculation.

The dynamical response of CB electrons to the appearance or disappearance of a VB hole
plays an even more important role at higher densities, where it gives rise to screening and, at
low enough temperatures and sufficiently high VB hole masses, to the celebrated Fermi-edge
singularity. Based on a parquet analysis of the ee and eh vertices, we proposed a minimal set of
equations which, in principle, is capable to describe the optical response in the high and the low
density regime, capturing both the Fermi-edge singularity at high density and trion formation at
low density. If the Fermi-edge singularity is of no concern, e.g., because the VB hole is too mobile,
only screening and single-particle self-energy corrections have to be consistently accounted for.
For this situation, we proposed a generalized CMFA. Both, the discussion of the minimal set of
equations as well as the discussion of the generalized CMFA remained somewhat tentative. Thus,
to demonstrate their feasibility it will be crucial to develop in the future efficient computational
techniques for their manipulation and solution.
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Appendix

Hylleraas Variational Approach for the Trion Groundstate

In the extreme dilute limit, where excess carriers provide only a reservior for trion formation, the
CMFA reduces in the vicincity of the exciton resonance the calculation of the optical susceptibility
to the determination of the groundstate of an isolated eeh cluster [cf. Eq. (1.39)]: From the
wavefunction ΨT we obtain the exciton-trion coupling constant uX

T , which, together with the
groundstate energy ε̃T , defines the exciton self-energy δM̃X . The optical susceptibility is then
given by Eq. (1.35). Because the eeh Schrödinger equation (1.39) is not separable, the trion
groundstate ΨT cannot be obtained analytically. In this appendix we describe the variational
approach we used to determine the groundstate wavefunction and energy. We closely followed
Stébé and coworkers [35, 36], who adopted Hylleraas’ variational method for the investigation
of two-electron systems [60] to calculate the energy and wavefunction of an isolated trion in a
semiconductor quantum well.

We start from Eq. (1.39), which in “atomic units”17 becomes

H = −1

2
[∇2

e1 + ∇2
e2] −

σ

2
∇2

h +
1

|~re1 − ~re2|
− 1

|~re1 − ~rh|
− 1

|~re2 − ~rh|
, (A.1)

with σ = me/mh. The vectors ~re1, ~re2, and ~rh denote, respectively, the position of the first
CB electron, the second CB electron and the VB hole in the quantum well plane. Because
of translational invariance, the eigenfunctions of H have to be also eigenfunctions of the to-
tal momentum operator, that is, the eeh wavefunctions satisfy not only HΨ = EΨ, but also
−ih̄[∇e1 + ∇e2 + ∇h]Ψ = PΨ. The center of mass motion of the eeh complex is therefore
a plane wave. To obtain the wavefunction for the internal motion we set P = 0. As a re-
sult, the kinetic energy of the VB hole, the second term in Eq. (A.1), can be replaced by
−(σ/2)∇2

h = −(σ/2)[∇e1 + ∇e2]
2 when acting on internal wave functions. For the internal mo-

tion, only the relative coordinates are relevant (see Fig. 1.14). The position of the VB hole
can be thus taken as the origin of the coordinate system. For the (isotropic) groundstate, the
orientiation of the triangle spanned by the three particles is moreover irrelevant. The ground-
state wavefunction ΨT depends therefore only on three independent variables: r1 = |~re1 − ~rh|,
r2 = |~re2 − ~rh|, and r12 = |~re1 − ~re2|. More suitable for the variational approach are however the
elliptical coordinates introduced by Hylleraas,

s = r1 + r2 s ≥ 0,
t = r1 − r2 −s ≤ t ≤ s,
u = r12 |t| ≤ u ≤ s,

(A.2)

in terms of which Eq. (A.1) becomes

H = Te + Th + V (A.3)

Te = −∂2
ss − ∂2

tt − ∂2
uu − 1

u
∂u − 2

s2 − t2
[s∂s − t∂t] −

2s(u2 − t2)

u(s2 − t2)
∂2

su − 2t(s2 − u2)

u(s2 − t2)
∂2

tu (A.4)

Th = −2σ{s
2 − u2

s2 − t2
∂2

ss +
u2 − t2

s2 − t2
∂2

tt +
s

s2 − t2
∂s −

t

s2 − t2
∂t} (A.5)

V =
1

u
− 4s

s2 − t2
. (A.6)

17We measure energies in units of 2R0 and lengths in units of a0, with R0 = e4me/2ε20h̄
2 the Rydberg and

a0 = h̄2ε0/e2me the Bohr radius in a semiconductor with a background dielectric constant ε0 and an electron mass
me.
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Figure 1.14: The independent variables for the trion groundstate calculation.

For the wavefunction ΨT , we make a Hylleraas ansatz

ΨT (s, t, u) = Φ(ks, kt, ku), (A.7)

with

Φ(s, t, u) =
∑

l,m,n

clnm|lnm〉 (A.8)

and

|lnm〉 = e−
s
2 sltmun, (A.9)

where m is even because the trion groundstate is a singlet. The variational parameters are the
expansion coefficients clnm and the effective VB hole charge k, which takes the partial screening
of the charge of the VB hole seen by one of the CB electrons due to the presence of the other CB
electron into account. Substituting ΨT into the Ritz variational principle,

E[ΨT ] =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

, (A.10)

and rewritting the integrals in terms of Hylleraas coordinates gives

E[ΨT ] =
k2M − kL

N
, (A.11)

with

M = 〈Φ|Te + Th|Φ〉, (A.12)

L = 〈Φ| − V |Φ〉, (A.13)

N = 〈Φ|Φ〉, (A.14)

and

〈Φ|[...]|Φ〉 =

∫ ∞

0
ds

∫ s

0
du

∫ u

0
dt

2π(s2 − t2)u
√

(u2 − t2)(s2 − u2)
Φ∗(s, t, u)[...]Φ(s, t, u). (A.15)

To proceed, we introduce a multiple index j = (lnm), substitute Eq. (A.8) into Eqs. (A.12) –
(A.14), and perform the integrations. The result can be compactly written as

M =
∑

jj′

cjTjj′cj′ , (A.16)

L =
∑

jj′

cjVjj′cj′ , (A.17)

N =
∑

jj′

cjSjj′cj′ , (A.18)
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with

4Tjj′ = Jjj′(0, 1, 2) − Jjj′(2, 1, 0) − 4(l′ −m′)(l′ +m′ + 2n′ + 1)Jjj′(0, 1, 0)

+ 4(l′ + n′ + 1)Jjj′(1, 1, 0) − 4n′(n′ + 2m′)Jjj′(2,−1, 0)

+ 4n′(n′ + 2l′)Jjj′(0,−1, 2) − 4l′Jjj′(−1, 1, 2)

+ 4l′(l′ − 1)Jjj′(−2, 1, 2) − 4m′(m′ − 1)Jjj′(2, 1,−2) − 4n′Jjj′(1,−1, 2)

+ 2σ{2(2l′ + 1)Jjj′(1, 1, 0) − 4[l′2 −m′2]Jjj′(0, 1, 0)

− Jjj′(2, 1, 0) + Jjj′(0, 3, 0) − 4l′Jjj′(−1, 3, 0)

+ 4l′(l′ − 1)Jjj′(−2, 3, 0) − 4m′(m′ − 1)Jjj′(0, 3,−2)}, (A.19)

Vjj′ = 4Jjj′(1, 1, 0) + Jjj′(0, 0, 2) − Jjj′(2, 0, 0), (A.20)

Sjj′ = Jjj′(2, 1, 0) − Jjj′(0, 1, 2), (A.21)

and

Jjj′(λ, µ, ν) = 2π

∫ ∞

0
ds e−ssl+l′+λ

∫ s

0
du

un+n′+µ

√
s2 − u2

∫ u

0
dt
tm+m′+ν

√
u2 − t2

(A.22)

= 2π(l + l′ + λ+ n+ n′ + µ+m+m′ + ν)!In+n′+µ+m+m′+νIm+m′+ν , (A.23)

where

In =

∫ 1

0
dx

xn

√
1 − x2

. (A.24)

Although the integral (A.24) can be analytically obtained, we found it more convenient to calcu-
late it numerically, in particular for large n.

The minimum conditions for the energy functional (A.11) are

∂kE = 0 and ∂cj
E = 0 ∀j. (A.25)

The first condition yields

k =
L

2M
, (A.26)

from which

E = − L2

4MN
(A.27)

follows. Equation (A.27) is a nonlinear functional of the expansion coefficients cj . From its
minimum condition we could actually find the coefficients cj . A better strategy is however to
start with a guess for k which is then iteratively updated. For a fixed k, the minimum conditions
(A.25) lead to a linear set of equations,

(k2T̃− kV − ES)~c = 0, (A.28)

with T̃ = (1/2)(T + TT ), where TT is the transpose of the matrix T. To determine the vector
~c, which contains the expansion coefficients cj , we follow Stébé and Ainane [35] and rewrite
Eq. (A.28), which is a generalized eigenvalue problem for the trion energy E, into a generalized
eigenvalue problem for the effective VB hole charge k:

V~c = kB~c, (A.29)
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with a symmetric matrix

B = T̃ + ΦS (A.30)

and an auxiliary quantity Φ = − E
k2 , which contains the (unknown) effective VB hole charge k as

well as the (unknown) energy E. To set up an iterative procedure, we prefer to eliminate these
two quantities in favor of the (also unknown) coefficients cj . With Eqs. (A.26) and (A.27) we
find

Φ =
M

N
, (A.31)

which depends only on the coefficients cj . We now convert the generalized eigenvalue problem
(A.29) to an ordinary eigenvalue problem. For that purpose, we perform a Cholesky decomposi-
tion of the (symmetric, positive definite) matrix B. With

B = LLT (A.32)

and the definitions

K = L−1V

(

L−1
)T

, (A.33)

~d = LT~c, (A.34)

Eq. (A.29) is equivalent to the symmetric eigenvalue problem

K~d = k~d, (A.35)

which we solve by standard numerical recipes routines. [69] The rank of the eigenvalue problem
is given by the number of expansion coefficients cj. The more terms are taken into account, the
higher is the accuracy of the groundstate energy and groundstate wavefunction. For our purpose
it is sufficient to work with a 22-term Hylleraas variational function, which consists of polynomials
up to order l+m+n = 4 (with m even). The mapping of the indices l,m, n to the multiple-index
j, which we use to organize the linear algebra involved, is shown in Table A.1.

For the trion groundstate, we need only the largest eigenvalue of Eq. (A.35) and the corre-
sponding eigenvector: kmax and ~dmax. Since the matrix K depends on the expansion coefficients
~c, through the quantity Φ, we have to adopt an iterative procedure: We start with an initial guess
for ~c and calculate the matrix K from Eq. (A.33). Then, we calculate the largest eigenvalue of Eq.
(A.35) and determine the corresponding eigenvector, kmax and ~dmax, respectively, from which we
first determine a new vector ~c [viz. inverse of Eq. (A.34)] and then a new matrix K, with which
we repeat the iteration cylcle until convergence is reached. If the vector ~c found in this manner is
substituted in Eqs. (A.27) and (A.8), we obtain the trion energy and the trion wavefunction in
“atomic units”, which we then translate into the excitonic units used in the expressions for the
optical susceptibility. The numerical procedure is rather robust and converges extremely fast.

The Ritz variational principle could be also used to construct excited states for the trion. It
is then however necessary to chose the trail wavefunctions to be orthogonal to all (approximate)
wavefunctions with lower energies. This by itself becomes very quickly an unwieldy procedure.
For the trion, which is closely related to the H−, it is moreover expected that the groundstate
is the only bound state. Excited states belong thus to a continuum, in which at least one of
the electrons is free. Variational principles for particular scattering states exits, for instance,
states which describe the break-up of the trion into an exciton and an electron. If, however, the
complete trion spectrum is required, the brute force numerical solution of the time-dependent eeh
Schrödinger equation is most probably the method of choice. [40,41] Faddeev techniques [62] could
be also used. These techniques, which are usually applied in momentum space, are moreover not
restricted to the extreme dilute limit.
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Table A.1: Mapping of the Hylleraas indices n, l,m for the 22-term Hylleraas variational function to
the multiple index j which we use to label the rows and columns of the matrices defining the eigenvalue
problem (A.35). The order of the Hylleraas function is given by n+ l +m.

j n l m n+ l +m j n l m n+ l +m

1 0 0 0 0 12 3 0 0 3
2 1 0 0 1 13 0 3 0 3
3 0 1 0 1 14 2 2 0 4
4 1 1 0 2 15 1 3 0 4
5 2 0 0 2 16 3 1 0 4
6 0 2 0 2 17 1 1 2 4
7 0 0 2 2 18 2 0 2 4
8 1 2 0 3 19 0 2 2 4
9 2 1 0 3 20 4 0 0 4
10 1 0 2 3 21 0 4 0 4
11 0 1 2 3 22 0 0 4 4
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Chapter 2

Polaron Formation and
Disorder [4–7]

This chapter discusses self-trapping of charge carriers (polaron formation) in a disordered envi-
ronment. In the first half of the chapter, which is largely based on Ref. [4], we study, at zero
temperature, the dynamics of a single electron in a Holstein model augmented by site-diagonal,
binary-alloy type disorder. The average over the phonon vacuum and the alloy configurations
is performed within an effective single-site approximation, which maps the lattice problem on
to a problem involving only a single self-consistently embedded impurity site. In particular, we
employ the dynamical coherent potential approximation, which is nothing but the single parti-
cle limit of the more general dynamical mean field theory. We present numerical results for a
Bethe lattice with infinite coordination number. In particular, we investigate, in the intermedi-
ate electron-phonon coupling regime, the spectral and diffusion properties in the vicinity of the
high-energy edge of the lowest polaronic subband. To characterize the diffusion properties, we
define a spectrally resolved delocalization time, which is, for a given energy, the characteristic
time scale on which the electron leaves a given site. We find delocalization times substantially
enhanced for states with a large phonon content, i.e., in the absence (presence) of alloy-type dis-
order at the high-energy edge(s) of the polaronic subband (mini-subbands). According to their
delocalization times, we discriminate between “fast” quasi-particle-like and “sluggish” defect-like
polaron states. Within the dynamical coherent potential approximation it is however impossible
to determine the critical disorder needed to localize polaron states. Accordingly, mobility edges
for polaron states cannot be determined. To overcome the limitations of the dynamical mean
field theory, we adopted therefore the statistical dynamical mean-field theory to the disordered
Holstein model. The second half of the chapter is a detailed discussion of this approach. It is
largely based on Ref. [7], supplemented with materials from Refs. [5, 6]. The statistical dynam-
ical mean field approximation maps the lattice problem on to an ensemble of self-consistently
embedded impurity problems, in contrast to the single impurity problem obtained within the
dynamical coherent potential approximation (viz. dynamical mean field approximation). It is
not only capable of accounting the polaron formation process but also the spatial fluctuations
giving rise to Anderson localization. The statistical dynamical mean field approximation is a
probabilistic approach, focusing on the distributions instead of the average values for observables
of interest. We employ a Monte-Carlo sampling technique to solve the self-consistent equations
of the theory on a Bethe lattice with finite coordination number, representing distributions for
random variables by random samples and discussing various ways to determine mobility edges
from the random sample for the local Green function. Specifically, we give, as a function of the



38 Polaron Formation and Disorder [4–7]

“polaron parameters”, such as adiabaticity and electron-phonon coupling constants, a detailed
discussion of the localization properties of a single polaron, using a bare electron as a reference
system.

2.1 Introductory Remarks

There is a large variety of materials in which due to strong electron-phonon coupling electrons
and phonons lose their identity and form new composite entities: polarons. Examples of current
interest are, among others, the high-temperature superconducting perovskites [70, 71], the non-
metallic nickelates and bismuthates [72,73], the colossal magneto-resistance manganites [74], and
semiconducting molecular crystals. [75] In all these materials, electronic properties, for instance,
the electronic spectral function or the optical conductivity, show substantial polaronic effects.
The most important signature in this respect is thermally activated transport (along at least one
of the crystallographic axes).

The polaron concept has been introduced by Landau [76] and ever since it played a central role
in the analysis of strongly coupled electron-phonon systems. In a deformable lattice, the coupling
between an electron and the lattice leads to a lattice deformation whose potential tends to bind
the electron. This process is called self-trapping, because the potential depends on the state of the
electron. [77, 78] Translational symmetry is not broken in this process, transport at low enough
temperatures is still coherent and band-like, with a much larger mass, however, because of the
lattice distortion the electrons have to carry along. The self-trapping process, i.e. the formation
of polarons, is therefore only the crossover from a weakly dressed electronic quasi-particle to a
heavily dressed polaronic quasi-particle. Even the small polaron, although much less mobile than
the bare electron, is still itinerant and not localized. [79]

Details of the actual materials notwithstanding, the Holstein model [80], which describes elec-
trons locally coupled to dispersionless phonons, captures the essence of the self-trapping process.
Most of the theoretical work is therefore directly based on the Holstein model. [81–86] Extensions
to long-range electron-phonon couplings on a discrete lattice were discussed in Refs. [87]. De-
spite the extensive numerical simulations, the properties of the Holstein model are not yet fully
understood, especially at finite densities, where the situation changes because of the interaction
between polarons. But even in the extreme dilute limit, where polarons in first approximation do
not interact, many questions remain. For instance, little is quantitatively known about polaron
formation in a disordered environment. On the other hand, polaronic materials are complex
materials, where chemical as well as crystallographic imperfections can be quite substantial. Ac-
cordingly, the self-trapping process, producing a heavy quasi-particle, occurs in an environment
where, strictly speaking, translational symmetry is broken, and where defects most probably
act as nucleation sites for the formation of polarons. Therefore, a complete theory of polaron
formation has to take the disordered environment into account. In particular, the notoriously
difficult question of whether polaron states are band states or localized defect states can be only
meaningfully addressed in a context which takes the most important effect due to disorder, the
possibility of Anderson localization, explicitly into account.

In his seminal work Anderson [88] has shown that disorder, if sufficiently strong, dramatically
changes the properties of the electronic states in a solid. Whereas for small disorder the electronic
states are extended Bloch waves, for large disorder electronic states are localized defect states.
Anderson localization, i.e., the transition from extended to localized states, is well understood
for noninteracting electrons (see, for instance, the review articles [89,90]). It depends strongly on
dimensionality. In one dimension (and arguably in two dimensions [91]) localized and extended
states cannot coexist, because infinitesimally small disorder suffices to localize all states at once,
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whereas in three dimensions mobility edges separate localized from extended states. Since the
mobility edge is of utmost importance for the transport properties [92], an enormous amount
of experimental and theoretical effort has been directed towards a precise determination of its
position.

That Anderson localization might affect polaron formation, and vice versa, has been em-
phasized several times, starting with Anderson [93] himself, who pointed out that the mobility
edge might be surrounded by self-trapped states. Not much quantitative work exists however to
determine, for instance, the position of the mobility edge and its consequences for the conduc-
tivity [94, 95], or the character of the states near the mobility edge [96] taking electron-phonon
coupling explicitly into account. Despite some occasionally fruitful adaptations of techniques
from nonlinear dynamics [97], where polaron formation is considered as an intrinsic interaction-
driven nonlinearity, the precise mechanisms of the interplay of Anderson localization and polaron
formation are essentially unknown.

As a first step to address this problem we applied the dynamical coherent potential approx-
imation (DCPA) to study a single electron in the Holstein model with binary disorder, focusing
especially on polaron states at the high energy edge of the lowest polaronic subband. [4] These
states are extremely sensitive to disorder, with a return probability which, due to the phonon
admixture, is several orders of magnitude larger than for the states at the bottom of the subband.
Within the DCPA it was however impossible to determine the critical disorder needed to local-
ize polaron states. Accordingly, mobility edges for polaron states could not be determined. To
overcome the limitations of the DCPA, we adopted therefore the statistical dynamical mean-field
theory (statDMFT) [98], to the Holstein model with uniformly distributed on-site energies. [5–7]
The statDMFT is not only capable of accounting the polaron formation process but also the
spatial fluctuations giving rise to Anderson localization. Within the statDMFT we could clearly
distinguish between itinerant and localized polaron states.

As a generic model for a disordered polaronic material, we use the Anderson-Holstein model

H =
∑

iσ

εiniσ −
∑

i,j,σ

Jijc
†
iσcjσ + Ω

∑

i

b†i bi −
√

EpΩ
∑

iσ

(bi + b†i )niσ, (2.1)

where niσ = c†iσciσ is the electron density on site i, the electron transfer integral Jij = J for (i, j)
next neighbor sites and zero otherwise, Ω is the bare phonon energy (h̄ = 1), and Ep is the polaron
shift. The on-site energies {εi} are assumed to be independent, identically distributed random
variables. We consider two cases: A bi-modal distribution p(εi) = (1− c)δ(εi − εA) + c δ(εi − εB),
with c the concentration of the B sites (“Holstein alloy”) and a uniform distribtuion p(εi) =
(1/γ)θ(γ/2 − |εi|).

The strength of disorder is either specified by |εA − εB | or by the width γ of the distribution.
The structure of the Anderson-Holstein model suggests to distinguish two regimes: The weakly
disordered Holstein regime, where disorder is small on the scale of the bare bandwidth, and
the strongly disordered Anderson regime, where disorder is large on the scale of the width of
the polaronic subbands. The “polaron properties” of the Anderson-Holstein model are governed
by two parameter ratios: the adiabaticity α = Ω/J , indicating whether the polaron is light
α � 1 or heavy α � 1 [78], and a dimensionless electron-phonon coupling constant, λ = Ep/2J
or g2 = Ep/Ω. Polaron formation sets in if both λ > 1 and g2 > 1. The internal structure
depends on α, in particular the momentum dependent phonon admixture of the polaronic quasi-
particle. It is quite different in the adiabatic (α � 1), non-adiabatic (α ∼ 1), and anti-adiabatic
(α � 1) regimes. Another important effect occurs in the intermediate coupling regime, where
electron-phonon coupling initiates long-range tunneling processes. [99] Evidently, how disorder
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affects polaron states strongly depends on the polaron parameters. As a result, the ‘localization
properties’ are expected to be quite different in the various polaronic regimes.

The plan of the remaining part of the chapter is as follows. Section 2.2 contains a general
description of the DCPA for the Anderson-Holstein model. Representative numerical DCPA
results for the “Holstein alloy” are discussed in Section 2.3. Section 2.4 summarizes the DCPA
investigation, including its shortcomings, and motivates the statDMFT study of the Anderson-
Holstein model. A detailed description of the statDMFT is given in Section 2.5. Numerical
statDMFT results for the Anderson model and the Anderson-Holstein model, both with a uniform
distribution of the on-site energies, are presented in Section 2.6.

2.2 Dynamical Coherent Potential Approximation (DCPA) [4]

In this section we adopt the dynamical coherent potential approximation (DCPA) and map the
Anderson-Holstein model on to a single self-consistently embedded impurity site. This was the
first approach we used to investigate the interplay between polaron formation and disorder. Al-
though the DCPA does not enable us to distinguish between itinerant and localized polaron
states, an asymptotic analysis of the spectrally resolved return probability already gives valuable
insights into the diffusion properties of polaron states. [4] In Section 2.5 we then adopt a gener-
alization of the effective single-site approximation – the statistical dynamical mean field theory
(statDMFT) [98] – and map the Anderson-Holstein model on to an ensemble of self-consistently
embedded impurity sites. Within the statDMFT we are then able to clearly distinguish between
localized and itinerant states. [5–7]

2.2.1 The Concept of an Effective Single Site

In contrast to the Anderson model, where an electron experiences only elastic impurity scattering,
the electron in the Anderson-Holstein model is subject to elastic impurity and inelastic phonon
scattering. It is therefore necessary to treat them simultaneously. In particular, averages over
the phonon vacuum and quenched disorder need to be performed on an equal footing.

A powerful tool to approximately perform these two averages is the effective single-site ap-
proximation, where one embeds an individual scatterer into an effective medium to be determined
self-consistently by enforcing the scattering from a single scatterer to vanish on the average. This
scheme maps the lattice problem on to a single impurity problem in such way that local corre-
lations are treated non-perturbatively (see Fig. 2.1). This is particularly important for polaron
formation, which is a non-perturbative effect. Inter-site correlations, on the other hand, which
are for instance crucial for Anderson localization, are only treated in mean field approximation.
As a result, within an effective single-site approximation, itinerant and localized polaron states
cannot be distinguished.

In the case of elastic impurity scattering the effective single-site approximation yields the
well-known coherent potential approximation (CPA). [100–103] The DCPA, originally developed
by Sumi [104], is a direct extension of the CPA to problems involving inelastic scattering. It
has been primarily used to investigate linear [104,105] and nonlinear [106–108] optical properties
of polaron-excitons in molecular crystals. However, it can be applied to any on-site inelastic
scattering process. Paquet and Leroux-Hugon [109] employed the DCPA, e.g., to investigate a
single quantum particle subject to an on-site potential which fluctuates in time according to
discrete or continuous Markov processes.

The CPA as well as the DCPA are effective single-site approximations for a single electron
subject to impurity or phonon scattering, respectively. The most general effective single-site ap-
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Figure 2.1: Illustration of the “philosophy” behind an effective single-site approximation. The lattice
problem is mapped on to a single impurity problem, that is, a single self-consistently embedded site. The
effective medium has to be determined self-consistently. The coherent potential approximation (CPA), the
dynamical coherent potential approximation (DCPA), as well as the dynamical mean field theory (DMFT)
belong to this group of approximations.

proximation, applicable also to dense quantum systems with mutual inelastic scattering between
its constituents, is the dynamical mean field theory (DMFT). [110–112] [Naturally, in the limit of
a single electron, interacting with a bath (of phonons or random scatterers), the DMFT reduces
to the (D)CPA.] It can be shown, assuming that the nearest-neighbor hopping integral is scaled
by a factor 1/

√
Z, where Z denotes the coordination number of the lattice1, that the DMFT

provides an exact solution of the original model in the limit of Z → ∞. Accordingly, the DMFT
[i.e., in the respective limits, the (D)CPA] can be either considered as an exact theory for lattices
with Z = ∞ or as an approximate theory for lattices with finite Z. The DMFT has been em-
ployed by Ciuchi and coworkers [113] to study, in various electron-phonon coupling regimes, the
groundstate and the spectral properties of a single electron in the Holstein model. As indicated
above, for a single electron, the DMFT reduces to the DCPA. The investigations of Sumi and
Ciuchi et al. are therefore closely related.

Because we are interested in spectral and diffusion properties of a single electron, we mostly
use the notation of the (D)CPA, avoiding the field-theoretical language of the DMFT. In the
single-electron sector, the spin is irrelevant and the Anderson-Holstein model (2.1) becomes

H =
∑

i

εi|i >< i| −
∑

i,j

Jij |i >< j| + Ω
∑

i

b†ibi

−
√

EpΩ
∑

i

(bi + b†i )|i >< i|, (2.2)

where |i > denotes the Wannier state on site i. Spectral properties of the model (2.2), such as the
density of states, the self-energy, and the spectral function, can be deduced from the electronic

1The coordination number Z of a lattice is the number of nearest neighbors. Sometimes the connectivity
K = Z − 1 is used instead to characterize a lattice.
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two-point function, which at temperature T = 0 and in Wannier representation reads

Gij(z) =< i|Gave(z)|j >, (2.3)

with an averaged one-resolvent

Gave(z) = 〈〈(0|G(z)|0)〉〉. (2.4)

Here, G(z) = 1/(z −H) denotes the one-resolvent and 〈〈...〉〉 and (0|...|0) stand, respectively, for
averages over the quenched disorder and the phonon vacuum. Henceforth, the term “averaged”
implies, if not otherwise specified, averaged over both quenched disorder and the phonon vacuum.

From the spectral properties alone it is, in general, not possible to decide whether the states
involved are itinerant or localized. A more reliable method to discriminate between the two kinds
of states is to investigate the return probability P , i.e., the probability to find (in the long time
limit) the electron on the same site at which it was initially injected. [114] At T = 0 and in
Wannier representation, the correlation function, whose long time limit is the return probability,
reads

P (t) = 〈〈(0| < i|eiHt|i >< i|e−iHt|i > |0)〉〉. (2.5)

Using Abel’s theorem, P can be conveniently expressed in terms of p(2η), the Laplace transform
of 1/2P (t/2). [114] Explicitly,

P = lim
t→∞

P (t)

= lim
η→0

2ηp(2η)

= lim
η→0

2η

∫ ∞

−∞

dω

2π
f(ω − iη, ω + iη), (2.6)

where we have defined a four-point function

f(z1, z2) =< i|Kave(z1, |i >< i|, z2)|i >, (2.7)

given in terms of an averaged two-resolvent, which (for an arbitrary electronic operator Oe) reads

Kave(z1, Oe, z2) = 〈〈(0|G(z1)OeG(z2)|0)〉〉. (2.8)

The behavior of the spectrally resolved return probability,

P (ω, η) = 2ηf(ω − iη, ω + iη), (2.9)

in the limit η → 0 allows one to distinguish localized from itinerant states. In particular, for
a localized polaronic defect state, limη→0 P (ω, η) is finite, whereas for an itinerant polaronic
quasi-particle state limη→0 P (ω, η) vanishes.

In the following we calculate the averaged one- and two resolvents within the DCPA.

2.2.2 Calculation of the One-Resolvent

In the spirit of the CPA we introduce an effective medium described by an effective one-resolvent

Ḡ(z) =
1

z − H̄(z)
, (2.10)
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with

H̄(z) = H0 + Σ(z), (2.11)

and

H0 = −
∑

i,j

Jij |i >< j| + Ω
∑

i

b†i bi. (2.12)

The unknown energy-dependent coherent potential (self-energy) operator Σ(z) defined with
respect to the reference Hamiltonian H0 will be specified by enforcing a self-consistency condition,
namely the averaged one-resolvent is forced to be equal to the averaged effective one-resolvent,
i.e.,

Gave(z) = (0|Ḡ(z)|0), (2.13)

where we have used the configuration independence of Ḡ(z).
In the above equations, the energy variable z denotes the total energy of the coupled electron-

phonon system and not just the electron energy. The coherent potential seen by the electron, on
the other hand, depends of course only on the electron energy. Therefore, the energy argument of
the coherent potential is the total energy z minus the lattice energy, which is, neglecting the zero
point motion of the phonons, just the total number of phonons in the system times the phonon
energy. A convenient way to ensure that the coherent potential is only a function of the electron
energy is to define, following Ref. [109], a set of projection operators Pq, which project onto
the phonon subspace with a total number of q phonons, and to write for the coherent potential
operator

Σ(z) =
∑

q

∑

i

PqΣ
(q)
i (z)

=
∑

q

∑

i

Pqv
(q)(z)|i >< i|, (2.14)

with v(q)(z) = v(z − qΩ). From now on we shall adopt the convention that any operator or
function with a superscript (q) has to be taken at the energy z − qΩ. Note, in accordance with
the spirit of the CPA, that the coherent potential v(z) does not contain any spatial information:
It neither depends on the site nor on the spatial distribution of the excited phonons.

Combining this ansatz for Σ(z) with Eq. (2.10), we obtain for the effective one-resolvent

Ḡ(z) =
∑

q

Pqg
(q)(z), (2.15)

with auxiliary (electronic) operators

g(q)(z) =
1

z − qΩ −∑~k
[ε~k + v(q)(z)]|~k >< ~k|

, (2.16)

with ε~k the band structure of the lattice as specified by transfer matrix elements Jij .

Apparently, in contrast to the full one-resolvent G(z), the effective one-resolvent Ḡ(z) is a
simple operator in the phonon Hilbert space. For an arbitrary phonon state |{nl}),

Ḡ(z)|{nl}) = g(
∑

l
nl)(z)|{nl}) (2.17)
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holds, i.e., (phonon) subspaces with different total phonon number are decoupled and, as a con-
sequence, the self-consistency condition Eq. (2.13) becomes

Gave(z) = g(0)(z). (2.18)

In order to derive a functional equation for the unknown function v(z), which in turn specifies
Gave(z), we perform a multiple-scattering analysis in the product Hilbert space of the coupled
electron-phonon system. Except for the underlying Hilbert space, the mathematical manipula-
tions parallel the CPA multiple-scattering analysis of Ref. [101]. The basic relation between the
full and effective one-resolvents,

G(z) = Ḡ(z) + Ḡ(z)T (z)Ḡ(z), (2.19)

involves the total T-matrix,

T (z) =
∑

i

Qi(z), (2.20)

which, according to Ref. [101], can be expressed in terms of individual single-site contributions

Qi(z) = ti(z)



1 + Ḡ(z)
∑

j 6=i

Qj(z)



 , (2.21)

with the atomic T-matrix given by

ti(z) =
[

1 − ∆Hi(z)Ḡ(z)
]−1

∆Hi(z). (2.22)

From Eq. (2.21) we see that Qi(z) is a product of the atomic T-matrices ti(z) and an effective

wave factor
[

1 + Ḡ(z)
∑

j 6=iQj(z)
]

describing an effective wave incident on site i modified by

multiple-scattering events. The single-site perturbation

∆Hi(z) =

[

εi −
√

EpΩ
(

b†i + bi
)

−
∑

q

Pqv
(q)(z)

]

|i >< i|, (2.23)

comprises on-site energy fluctuations due to material imperfections and coupling to localized
phonons on site i.

Combining Eq. (2.19) with Eq.(2.20) and taking Eq. (2.17) into account, the self-consistency
condition Eq. (2.18) is satisfied if we enforce

〈〈(0|Qi(z)|0)〉〉 = 0. (2.24)

Iteration of Eq. (2.24) gives rise to an intractable infinite series involving all sites of the lattice.
The standard procedure to obtain a numerically feasible description is to factorize the average
in Eq. (2.24) into a product of averages, i.e., to average atomic T-matrices and effective wave
factors separately. Relegating a discussion of the factorization procedure to the next subsection,
we approximate Eq. (2.24) by

〈〈(0|Qi(z)|0)〉〉 ≈ 〈〈(0|ti(z)|0)〉〉
× 〈〈(0|1 + Ḡ(z)

∑

j 6=i

Qj(z)|0)〉〉, (2.25)
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reducing thereby the self-consistency condition to 〈〈(0|ti(z)|0)〉〉 = 0. Because phonons on sites
j 6= i are not affected by scattering events encoded in ti(z) (they are “frozen” and act only as
“spectators”), the single-site self-consistency condition can be formulated more generally as

〈〈(N, 0i|ti(z)|0i, N)〉〉 = 〈〈(0, 0i|t(N)
i (z)|0i, 0)〉〉

= 0 ∀ N, (2.26)

where |ni, N) denotes an arbitrary phonon state with n phonons on site i and a total number
of N phonons on all the other sites. Note the usage of the supersript notation defined above.
The physical interpretation of Eq. (2.26) is the following: The electron “remembers” how many
virtual phonons it has excited in previous scattering events (and, accordingly, how much energy
is stored in the lattice); it does not “remember”, however, at which sites these events took place.

Instead of working directly with Eq. (2.26), it is more convenient to introduce an equiv-
alent polaron-impurity model (PIM) [107], which describes a single perturbation ∆Hi(z) self-
consistently embedded into an effective medium. Mathematically, the PIM is formulated by

Di(z) = Ḡ(z) + Ḡ(z)ti(z)Ḡ(z) (2.27)

= Ḡ(z) + Ḡ(z)∆Hi(z)Di(z). (2.28)

The self-consistency equation (2.26) is then transformed into

〈〈(0, 0i|D(N)
i (z)|0i, 0)〉〉 = g(N)(z), (2.29)

which in turn yields for the averaged one-resolvent

Gave(z) = g(0)(z) = 〈〈(0, 0i|Di(z)|0i, 0)〉〉. (2.30)

As shown in Appendix A, it is straighforward to derive from the PIM a non-linear functional
equation for the local two-point function. We get

Gii(z) =

∫

dεi
p(εi)

[F (0)(z; εi)]
−1 − EpΩ

[F (1)(z; εi)]
−1 − 2EpΩ

[F (2)(z; εi)]
−1 − 3EpΩ

..

, (2.31)

with

F (n)(z; εi) =
1

z − nΩ − εi + G−1
ii (z − nΩ) −R[Gii(z − nΩ)]

, (2.32)

where R[ξ] denotes the inverse Hilbert transform (see below).

For p(εi) = δ(εi) Eqs. (2.31)–(2.32) have been given by Sumi [104] and independently by
Ciuchi and coworkers. [113] Various limits of the “clean equations”, e.g., weak, intermediate, and
strong electron-phonon coupling limits, have been discussed in these references. The non-linear
functional couples local two-point functions with energies shifted by any negative integer multiple
of Ω. This accounts for the fact that at zero temperature only phonon emission is possible. At
finite temperature, in contrast, absorption of thermally excited phonons is also allowed. In that
case, local two-point functions with energies shifted by any integer multiple of Ω, negative as well
as positive, would be coupled. [104, 113]



46 Polaron Formation and Disorder [4–7]

The coherent potential v(z) can be directly obtained from Eq. (2.30). Specifically, introducing
the Hilbert transform Ñ0[ξ] corresponding to the bare density of states N0(E) = (1/N)

∑

~k
δ(E−

ε~k), the local two-point function can be written as

Gii(z) =

∫

dE
N0(E)

z − v(0)(z) −E

= Ñ0[z − v(0)(z)]. (2.33)

Employing the inverse Hilbert transform, defined by R ∗ Ñ0[ξ] = ξ, finally leads to

v(0)(z) = z −R[Gii(z)]. (2.34)

The local two-point function Gii(z) uniquely determines the coherent potential v(0)(z). Once
v(0)(z) is known any matrix element of the averaged one-resolvent can be obtained.

2.2.3 Validity of the Factorization Procedure

So far, we employed a factorization procedure to reduce the multi-site self-consistency condition
to a single-site condition. Clearly, the mathematically exaxt average of the operator Qi contains
many terms which are not zero, even if the atomic T-matrix vanishes. The single-site self-
consistency condition can be only approximate. We now analyze the validity of the factorization
procedure taking advantage of the connection between the DCPA and the DMFT. As a by-
product, we shall find an efficient way to derive the DCPA equations for the averaged two-
resolvent.

To that end, we follow Ref. [115] and rearrange the multiple-scattering series into clusters
containing a fixed number p of lattice sites. We write (suppressing the energy variable z)

Qi =
∑

p

Q
[p]
i , (2.35)

with Q
[1]
i = ti and

Q
[p]
i = ti

∑

j1 6=i

Ḡt
[2]
j1

(i)
∑

j2 6=i,j1

Ḡt
[3]
j2

(i, j1)

...
∑

jp−1 6=i,j1,...,jp−2

Ḡt
[p]
jp−1

(i, j1, ..., jp−2) (2.36)

for p ≥ 2. The cluster T-matrices t
[p]
jp−1

(i, j1, ..., jp−2) are defined as the sum of all scattering
processes involving at most p different sites i, j1, ..., jp−1 with the constraint that the entrance

site has to be jp−1. This constraint ensures that all p sites contributing to Q
[p]
i are connected.

The exit site, on the other hand, can be any site of the p-cluster. Notice that, in contrast to the
original multiple-scattering series given in Eq. (2.21), where only successive summation indices
had to be different, all summation indices in Eq. (2.36) are different.

We are now in a position to evaluate the importance of each individual multiple-scattering
term contributing to Qi. Keeping in mind that all processes where a site j is visited only once
vanish due to the single-site self-consistency condition Eq. (2.26), only processes where all sites
are at least visited twice require further analysis. Figure 2.2 schematically depicts the first non-
vanishing p = 2 process (i.e., a fourth order process in which each of the two sites is visited twice).
Writing

t(r)nm =< i|(0, ni|t(r)i |mi, 0)|i > (2.37)
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Figure 2.2: Schematic representation of a fourth order process contributing to Q
[2]
i . Atomic T-matrices

and effective one-resolvents are, respectively, depicted by solid circles and solid lines. The arrows indicate
the order in which the diagram has to be read. The energy arguments are clear from the context.

for the (configuration dependent) matrix elements of the atomic T-matrix, this process is analyt-
ically given by

Q
[2],4th

i =
∑

j 6=i,qr

t
(0)
0r G

(r)
ij t

(r)
0q G

(r+q)
ji t

(q)
r0 G

(q)
ij t

(0)
q0 |i >< j|. (2.38)

To proceed further, we now imagine at this point that the hopping matrix element is scaled
by 1/

√
Z (as in the case of the DMFT). Then, we immediately see that for large Z Eq. (2.38)

is at least ∼ 1/
√
Z because it contains three off-diagonal two-point functions and only one free

summation over sites j, i.e., for Z → ∞ this process does not contribute to Qi at all. In fact, it can
be shown that all p-cluster processes in which all p sites are at least visited twice are suppressed
by a factor containing the inverse of the coordination number Z. As a consequence, for Z → ∞
these processes vanish and need not be explicitly considered in the averaging procedure.

The implication of the above discussion is three-fold. First, it corroborates, using multiple-
scattering theory, the conventional CPA technique, previous work by Vlaming and Vollhardt [116],
who showed, acknowledging earlier work by Schwartz and Siggia [117], that for a lattice with
infinite coordination number any CPA-type theory becomes exact, i.e., for infinite coordination
number, the single-site self-consistency condition is indeed sufficient to ensure that the average
of Qi as a whole vanishes.

Second, it indicates that even for a finite coordination number, processes which do not vanish
due to the single-site self-consistency condition are at least suppressed.

Third, from a formal point of view, the DCPA is equivalent to the replacement of the full
operator Qi by a reduced operator QSAP

i containing only self-avoiding paths (SAP); QSAP
i can be

obtained from Eq. (2.36) by setting t
[p]
jp−1

(i, j1, ..., jp−2) = tjp−1∀ p. The coherent potential v(z) is

then adjusted in such a way that the averaged QSAP
i vanishes. This procedure can be envisaged,

in physical terms, as a loss of spatial memory, because the electron “assumes” that each site it
encounters is visited the first time, i.e., the electron does not “remember” whether it has visited
the site before. Naturally, for a lattice with infinite coordination number, this is exact, because
the probability that the electron returns to the same lattice site is vanishingly small.

The replacement Qi → QSAP
i , i.e., the erasur of the spatial memory of the electron, is of course

consistent with the ansatz for the (local) self-energy operator. On the other hand, this replace-
ment leads to an insufficient treatment of inter-site processes in the calculation of the averaged
two-resolvent and, eventually, prevents a rigorous calculation of the diffusion and localization
properties within the DCPA.

Keeping this shortcoming in mind, we shall nevertheless employ this formal replacement from
the outset in the next subsection to simplify the calculation of the four-point function.

2.2.4 Calculation of the Two-Resolvent

The discussion of the previous subsection suggests that the single-site self-consistency condition
is, from a formal point of view, equivalent to the replacement Qi → QSAP

i , i.e., only SAPs need
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(b)

(a)

Figure 2.3: Schematic representation of the second order (ladder) process contributing to the local DCPA
vertex (a) and of the second order (maximally crossed) process neglected within the DCPA (b). The
dashed line depicts the operator Oe and solid circles and lines stand, respectively, for atomic T-matrices
and effective one-resolvents. The arrows indicate the order in which the diagrams have to be read. The
energy arguments are clear from the context.

to be explicitly considered in the averaging procedure. We now show that this replacement allows
a rather straightforward derivation of the averaged two-resolvent.

For that purpose, we first recast Eq. (2.8), using Eqs. (2.17) and (2.19) together with the
self-consistency condition, Eq. (2.26), into

Kave(z1, Oe, z2) = g(0)(z1) [Oe + Γave(z1, Oe, z2)] g
(0)(z2). (2.39)

Keeping only site-diagonal terms, the electronic vertex operator is given by

Γave(z1, Oe, z2) =
∑

i

〈〈(0|Γi(z1, Oe, z2)|0)〉〉, (2.40)

with a local vertex operator

Γi(z1, Oe, z2) = QSAP
i (z1)Ḡ(z1)OeḠ(z2)Q̃

SAP
i (z2). (2.41)

In the above equations we have kept only retraceable SAP’s where the second leg of the
path, encoded in Q̃SAP

i , retraces in reversed order the first leg of the path, encoded in QSAP
i

and neglected retraceable SAP’s where the second leg retraces the first leg in the same order.
In more familiar terms (see Fig. 2.3), we have kept the ladder diagrams and neglected (max-
imally) crossed diagrams. This choice is consistent with the coherent potential determined in
the previous subsection. In particular, as shown in Appendix B, the local vertex defined in the
ladder approximation and the local self-energy obey the Ward identity corresponding to particle
conservation. [102]

In analogy to the localization problem in the Anderson model, which contains only quenched
disorder, we expect the maximally crossed diagrams to yield a significant (for certain model
parameters possibly diverging) contribution to the local vertex function. As a consequence, a
consistent treatment of these processes might render the potential to force limη→0 P (ω, η) to be
finite for some energies ω and for certain model parameters. Accordingly, itinerant and localized
polaron states could be rigorously distinguished. We did not, however, succeed in taking these
diagrams into account. In Refs. [5–7], we adopted therefore an alternative approach, which is
not based on a diagrammatic expansion of the one- or two-resolvents in terms of atomic T-
matrices. Instead, it is based on the construction of random samples for local observables. From
a probabilistic analysis of the random samples for the imaginary part of the local two-point
function it is then possible to develop a criterion which allows to distinguish between itinerant
and localized polaron states. This approach will be described in Section 2.5.

To derive an explicit equation for the local vertex function (in the ladder approximation), we
have to perform the average of Eq. (2.41). To that end, it is advantageous to derive a formal
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Figure 2.4: Schematic representation of Eq. (2.41). The box on the left hand side denotes the local vertex
operator Γi, the dashed line depicts the operator Oe, and solid circles and lines stand, respectively, for
atomic T-matrices and effective one-resolvents. The arrows indicate the order in which the diagram has
to be read. The energy arguments are clear from the context.

operator equation for the local vertex operator Γi. For simplicity, we shall from now on suppress
the arguments of the various operators. The implied arguments should be clear from the context.
If we visualize Eq. (2.41) in terms of diagrams (see Fig. 2.4), we readily obtain

Γi = tiḠ



Oe +
∑

j 6=i

Γ
(i)
j



 Ḡti, (2.42)

where Γ
(i)
j stands for the vertex operator on site j given by summing up all “ladder-type paths”

not visiting site i. Consequently, as far as the configuration average is concerned, the atomic T-
matrices ti and the term between the brackets are statistically independent and the configuration
average factorizes, i.e.,

〈〈Γi〉〉 = 〈〈tiḠ〈〈


Oe +
∑

j 6=i

Γ
(i)
j



〉〉Ḡti〉〉. (2.43)

For a macroscopic solid we expect 〈〈Γ(i)
j 〉〉 essentially to be the same operator as 〈〈Γj〉〉. Hence,

if we dealt only with quenched disorder, Eq. (2.43) would be the result given by Velickỳ. [102] To
cope with inelastic scattering, we have to keep in mind, however, that the vertex function (similar
to the coherent potential) depends only on the electron energy, i.e., we have to keep track of the
energy stored in the lattice (given by the total number of virtual phonons). Consistent with the
ansatz for the local self-energy operator, we therefore write

〈〈Γi〉〉 =
∑

q

PqΓ
(q)
i

=
∑

q

Pqγ
(q)
i |i >< i|, (2.44)

with γ
(q)
i = γi(z1 − qΩ, Oe, z2 − qΩ). Thus, the phonon vacuum expectation value of Eq. (2.43)

becomes

γ
(0)
i = 〈〈

∑

q

t
(0)
0q

[

K
(q)
i − G(q)

ii γ
(q)
i G(q)

ii

]

t
(0)
q0 〉〉, (2.45)

with

K
(q)
i =< i|g(q)Oeg

(q)|i > +
∑

l

G(q)
il γ

(q)
l G(q)

li . (2.46)

Note, the only configuration dependent quantities are now the matrix elements of the atomic
T-matrix.

The linear functional for the vertex function is not “local” in the energy variables z1 and z2.
Instead, due to the possibility of phonon emission, Eq. (2.45) couples all vertex functions with
energies shifted by any negative integer multiple of Ω.
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Employing spatial Fourier transforms,

K
(r)
~Q

=
∑

i

e−i ~Q·~RiK
(r)
i , (2.47)

a
(r)
~Q

=
∑

i

e−i ~Q·~Ri < i|g(r)Oeg
(r)|i >, (2.48)

A(r)
~Q

=
∑

~Ri−~Rj

e−i ~Q·[~Ri−~Rj ]G(r)
ij G(r)

ji , (2.49)

γ
(r)
~Q

=
∑

i

e−i ~Q·~Riγ
(r)
i , (2.50)

it is straigthforward to combine Eqs. (2.45) and (2.46) and to derive, after some rearrangements,
a single equation for the Fourier-transformed local vertex function:

γ
(0)
~Q

=
∑

q

〈〈t(0)0q t
(0)
q0 〉〉a

(q)
~Q

+
∑

q

〈〈t(0)0q t
(0)
q0 〉〉{A

(q)
~Q

− G(q)
ii G(q)

ii }γ(q)
~Q
. (2.51)

This equation reduces in the limit Ω → 0 and EpΩ = const to Velický’s vertex equation [102]
for a model with a Gaussian distribution of on-site energies on top of a bi-modal distribution of

on-site energies. This is shown in Appendix C. Note, moreover, that γ
(0)
~Q

may be used to calculate

any matrix element of the averaged two-resolvent of interest, i.e., the averaged two-resolvent is

completely determined by γ
(0)
~Q

.

2.2.5 Specification to a Bethe Lattice

So far, we neither specified the coordination number Z nor the structure of the underlying lattice.
The DCPA equations for the one- and two-resolvents can be used for arbitrary lattices. On
the other hand, we have shown in Subsection 2.2.3 that the single-site factorization procedure
essentially ignores processes, where the electron returns to the same lattice site. It is therefore
consistent with the DCPA to use a lattice, which, by construction, completely prohibits this
type of processes, that is, a lattice which is loop-free. A particularly simple case is the Z = ∞
Bethe lattice. (It should be emphasized, however, that, within the DCPA, the numerical results,
in particular for the spectrally resolved return probability, are not affected much by the chosen
lattice.)

The main simplification, as far as the calculation of the local two-point function is concerned,
arises from the fact that the inverse Hilbert transform for a Z = ∞ Bethe lattice is an algebraic
relation, namely R[ξ] = (1/4)ξ + 1/ξ, which makes the self-consistent solution of Eqs. (2.31)–
(2.32) particularly easy.

The calculation of the local vertex function simplifies even more, because, for a Z = ∞ lattice,

Eq. (2.49) reduces (for almost all ~Q) to A(r)
~Q

(z1, z2) ≈ G(r)
ii (z1)G(r)

ii (z2). [112] Therefore, the second

term on the rhs of Eq. (2.51) vanishes and the local vertex function becomes

γ
(0)
~Q

=
∑

q

〈〈t(0)0q t
(0)
q0 〉〉a

(q)
~Q
, (2.52)

which yields for the Fourier transform of Eq. (2.46):

K
(0)
~Q

= a
(0)
~Q

+ G(0)
ii G(0)

ii

∑

q

〈〈t(0)0q t
(0)
q0 〉〉a

(q)
~Q
. (2.53)
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To investigate the localization properties of the polaron states, we need the four-point function
f(z1, z2) defined in Eq. (2.7). To that end, we set Oe = |i >< i| in the above equation and obtain
after Fourier transformation

f(z1, z2) = Gii(z1)Gii(z2) + Gii(z1)Gii(z2)
∑

q

〈〈t(0)0q (z1)t
(0)
q0 (z2)〉〉G(q)

ii (z1)G(q)
ii (z2). (2.54)

This equation holds for any lattice with Z = ∞. The structure of the lattice, i.e., in our case,
the structure of the Bethe lattice, enters only through the local two-point function Gii(z).

In Appendix A we show that Eq. (2.54) can be brought into a numerically more convenient
form,

f(ω − iη, ω + iη) =
∞
∑

r=0

∫

dεip(εi)|D(0)
r0 (ω + iη; εi)|2, (2.55)

with amplitudes D(0)
r0 (ω + iη; εi) satisfying the recursion relation (A.10). Thus, the calculation

of the four-point function f(ω − iη, ω + iη) requires the same (moderate) numerical effort as the
calculation of the local two-point function Gii(ω + iη).

The numerical strategy is now as follows. First, we truncate the continued fraction expansions

in Eq. (2.31) and find the fixed point G(fix)
ii (ω+iη) by iteration. The density of states then follows

directly from

N(ω) = − 1

π
ImG(fix)

ii (ω + iη). (2.56)

For the Holstein alloy, that is, for on-site energies with a bi-modal distribution p(εi) = (1 −
c)δ(εi − εA) + c δ(εi − εB), it is interesting to study the individual contributions of the A and B
sites. We calculate therefore also the two component density of states in the Holstein alloy,

Nλ(ω) = − 1

π
ImD(0)

00 (ω + iη; ελ), (2.57)

where λ = A,B. The two amplitudes D(0)
00 (ω + iη; εA) and D(0)

00 (ω + iη; εB), which are also
needed in the calculation of the spectrally resolved return probability in the Holstein alloy (see
below), are given by the integrand of Eq. (2.31) without the factor p(εi) and with εi = ελ and

Gii(z) = G(fix)
ii (z).

Second, we insert G(fix)
ii (ω + iη) in Eq. (2.34) and obtain the coherent potential v(0)(ω + iη),

which yields, using Eqs. (2.16) and (2.18), the spectral function

A(ω, ε~k) = − 1

π
Im

1

ω + iη − ε~k − v(0)(ω + iη)
. (2.58)

Third, to calculate the spectrally resolved return probability P (ω, η) defined in Eq. (2.9), we

truncate the sums in Eq. (2.55) and successively construct the amplitudes D (0)
r0 (ω + iη; εi) from

the recursion relation, Eq. (A.10), starting from D(0)
00 (ω + iη; εi). For the Holstein alloy, we only

need two amplitudes: D(0)
r0 (ω + iη; εA) and D(0)

r0 (ω + iη; εB). The truncation procedures and the
subsequent numerical solution of the truncated equations for small η > 0 converge very well.
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Table 2.1: Polaron model parameters (in units of 2J)

J Ω g λ = Ep/2J α = Ω/J

0.5 0.125 0.35 0.98 0.25

2.3 Numerical Results I [4]

In this section we present DCPA results for the Holstein model (γ = 0) and the Holstein alloy,
where the on-site energies obey a bi-model distribution, p(εi) = (1 − c)δ(εi − εA) + c δ(εi − εB).
We focus on the spectral and diffusion properties of that part of the spectrum, where we expect
more rigorous theories, such at the statDMFT, to predict localized states. In particular, we
investigate, in the intermediate electron-phonon coupling regime, the states comprising the high-
energy edge of the lowest polaronic subband (minisubband) in the Holstein model (Holstein
alloy). The dispersion is extremely flat in this part of the spectrum, indicating, perhaps, already
the tendency towards localization. Indeed, the statDMFT will show that very small amounts of
disorder suffice to drive these states into the localized regime.

2.3.1 Spectral Properties

We discuss the spectral properties of a subclass of polaron states, which we expect to be very
susceptible to an extrinsic localization transition. However, as mentioned in subsection 2.2.1,
spectral properties alone cannot be used, even within a rigorous theory, to decide whether states
are itinerant or localized.

We start with the Holstein model [model (2.2) with δ = 0], which we characterize by two pa-
rameters, λ = Ep/2J and α = Ω/J .2 These parameters are conventionally used to define strong,
intermediate, and weak electron-phonon coupling regimes. [118] The overall DCPA spectral fea-
tures of which have been thoroughly investigated by Ciuchi et al. [113] and by Sumi. [104] The
most intriguing of these regimes is, perhaps, the intermediate electron-phonon coupling regime,
approximately defined by λ ≥ 1, where a finite number of polaronic subbands starts to develop
on the low energy side of the bare density of states. The formation of these polaronic subbands,
in particular as a function of λ and α, has been intensively studied in above mentioned references.
For our purpose, it is sufficient to focus, for a fixed λ and α, on the lowest polaronic subband.

Generic numerical results for the Holstein model in the intermediate electron-phonon coupling
regime are summarized in Fig. 2.5. The polaron parameters are given in Table 2.1. We first focus
on panels (a) and (b), which depict the density of states N(ω), the imaginary part of the coherent
potential Imv(ω), and the spectral function A(ω, ε~k), respectively. The spectrally resolved return
probability P (ω, η) shown in panel (c) will be discussed in the next subsection.

The main spectral characteristics in the intermediate electron-phonon coupling regime is the
formation of a well-established lowest polaronic subband with an asymmetric, steeple-like density
of states, separated from the rest of the spectrum by a hard gap. Below the phonon emission
threshold, which is inside the second polaronic subband, no residual scattering takes place, i.e.,
Imv(ω) = 0. That is, within the lowest polaronic subband, the electron and the phonons arrange
themselves into a new (composite) entity – a polaronic quasi-particle. [113] [The pole of Imv(ω)
slightly above the high-energy edge of the lowest polaronic subband does not imply a diverging
scattering rate; it merely signals the presence of the gap.] That the quasi-particle concept indeed

2In Ref. [4] λ and α were defined differently.
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Figure 2.5: Spectral and diffusion properties of the Holstein model in the vicinity of the first polaronic
subband for λ = 0.98, α = 0.25 (see Table 2.1), and η = 10−4. (a) Density of states N(ω) (solid line)
and imaginary part of the coherent potential Imv(ω) (dashed line). (b) Spectral function A(ω, ε~k) with ε~k
ranging from ε~k = −1 to ε~k = 1 (bottom to top) in steps of ∆ε~k = 0.2. For clarity the spectral functions
corresponding to different ε~k are artificially shifted along the vertical axis. (c) Spectrally resolved return
probability P (ω, η).

applies can be also seen from the spectral function, which features a (dispersive) quasi-particle
peak in the energy range of the lowest polaronic subband. Notice the pronounced band flattening
and the vanishing quasi-particle weight in the flat part of the dispersion. The band flattening is
the reason for the steeple-like density of states. At higher energies a second quasi-particle peak
corresponding to the second polaronic subband is visible until the point where it merges with the
one-phonon scattering continuum.

Both the steeple-like shape of the density of states and the band flattening at the high-energy
edge of the lowest polaronic subband are an indirect consequence of the pole in the imaginary part
of the coherent potential. As can be seen in Figs. 2.6a and 2.6b, the pole in the imaginary part is
accompanied by a divergence in the real part. (Both are broadened due to the finite value of η; the
pole becomes a Lorentzian and the divergence becomes a pronounced kink.) The divergence, in
turn, induces a pronounced energy dependence of Rev(ω) just below the high-energy edge and it
is this strong energy dependence which, as we shall show below, eventually yields the steeple-like
density of states and the band flattening. Physically, the energy dependence of the real part of
the coherent potential reflects the increasing phonon admixture in the states as the high-energy
edge of the subband is approached.

The discussion of the steeple-like subband density of states is facilitated by considering

N1st(ω) =
2

π
Re
√

1 − [ω − Rev(ω)]2, (2.59)

an exact analytical expression for the lowest subband density of states, which follows from Eqs.
(2.56) and (2.33) in the limit η → 0 and the fact that for the lowest subband Imv(ω) = 0. Two
conclusions can be drawn from Eq. (2.59). First, the position ωm of the maximum of the subband
density of states does not coincide with the high-energy edge ωh, because they are respectively
given by ωm −Rev(ωm) = 0 (thin solid line in Fig. 2.6a) and ωh −Rev(ωh) = 1 (thin dashed line
in Fig. 2.6a). Hence, the density of states at the high-energy egde is, albeit very step-like, not
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Figure 2.6: Blow-up of Fig. 2.5 in the immediate vicinity of the high-energy edge of the lowest polaronic
subband. (a) Real part of the coherent potential Rev(ω) for η = 10−4 (thick solid line). The interceptions
with the thin and dashed solid lines determine, respectively, the maximum of the subband density of states
and the position of the high-energy edge. (b) Density of states for η = 10−4 (solid line) and η = 10−8

(dotted line). The dashed line depicts the imaginary part of the coherent potential Imv(ω) for η = 10−4.
(c) The poles of the spectral function ω(ε~k). Here we plot ε~k vs. ω. (d) Spectrally resolved return
probability P (ω, η) for η = 10−4.

discontinuous, even for η → 0. Second, Eq. (2.59) together with Figs. 2.6a and 2.6b reveal that
the rapid change of Rev(ω) between ωm and ωh, caused by the divergence above ωh, produces
the rapidly dropping density of states in this particular energy range, and hence, the steeple-like
shape.

Figures 2.6a and 2.6c suggest, moreover, that the rapidly changing Rev(ω) is also responsible
for the band flattening. To be more specific, we recall that the dispersion ω(ε~k) is given by the
poles of the spectral function defined in Eq. (2.58). Therefore, the change of the dispersion with
ε~k becomes

dω(ε~k)

dε~k
= (1 − dRev(ω)

dω
|ω=ω(ε~k))

−1, (2.60)

which is, of course, particularly small for ωm ≤ ω ≤ ωh, since the divergence yields a large
derivative of Rev(ω). It is, therefore, the divergence-induced strong ω-dependence of the real part
of the coherent potential which not only causes the steeple-like subband density of states but also
the pronounced flattening of the subband dispersion.

The DCPA results for the lowest polaronic subband corroborate data obtained by direct
numerical simulation of a finite Holstein model in the single-electron sector. [83,86,99] Specifically,
the band flattening and the vanishing quasi-particle weight in the flat part of the dispersion are
in good qualitative agreement. Both effects, characteristic of the intermediate electron-phonon
coupling regime, are manifestations of the strong on-site electron-phonon correlations, which
yield an increasing phonon admixture in the states comprising the high-energy edge of the lowest
polaronic subband. [99]

Clearly, the phonon admixture in the states must significantly affect the diffusion properties.
In particular, because the dispersion becomes extremely flat in the vicinity of the high-energy
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Figure 2.7: Spectral and diffusion properties of the Holstein alloy in the vicinity of the high-energy edge of
the first polaronic subband for c = 0.5 and δ = −0.01. The polaron parameters are λ = 0.98 and α = 0.25
(see Table 2.1) and η = 10−4. (a) Density of states N(ω) (solid line), component density of states NA(ω)
(dotted line) and NB(ω) (dot-dashed line), and imaginary part of the coherent potential Imv(ω) (dashed
line). (b) Spectral function A(ω, ε~k) with ε~k ranging from ε~k = −1 to ε~k = 1 (bottom to top) in steps of
∆ε~k = 0.2. For clarity the spectral functions corresponding to different ε~k are artificially shifted along the
vertical axis. (c) Spectrally resolved return probability P (ω, η).

edge of the lowest polaronic subband, these states might be temporarily localized. In the next
subsection, we will present an analysis of the spectrally resolved return probability P (ω, η), which
indeed shows that the high-energy edge states are extremely “sluggish”.

However, first we illustrate the modifications of the lowest polaronic subband due to alloying.
We expect disorder on the scale of the subband width to show the most dramatic effects and
therefore restrict δ = εA − εB [in Eq. (2.2)] to small values. Further, to be specific, we chose the
B atoms to be energetically close to the high-energy edge of the subbands, i.e., we consider δ < 0.

Figure 2.7 shows representative numerical results for the Holstein alloy. The polaron pa-
rameters are the same as in Fig. 2.5 (see Table 2.1) and the alloy parameters are c = 0.5 and
δ = −0.01. First, we focus again on panels (a) and (b), which summarize the spectral properties
in the vicinity of the lowest polaronic subband. The spectrally resolved return probability shown
in panel (c) will be discussed in the next subsection.

The main effect of alloying is the formation of two mini-subbands. For the chosen parameters
both mini-subband density of states exhibit a pronounced asymmetric, steeple-like shape (see
Fig. 2.7a). From the strong asymmetry of the component density of states, which are also
depicted in Fig. 2.7a, we find, moreover, that, although both A- and B-sites contribute to both
mini-subbands, the steeple-like shape of the mini-subband density of states comes entirely either
from the A-sites (lower mini-subband) or from the B-sites (upper mini-subband). As in the case
without disorder, the steeple-like shape is due to strong on-site electron-phonon correlations,
which yield a large phonon admixture in the states at the high-energy edges of the respective
mini-subbands, and, as a consequence, to rather flat dispersions in these parts of the spectrum.
The band flattening can be clearly seen from the spectral function shown in Fig. 2.7b.

The detailed appearance of the mini-subbands depends on the concentration c and the scat-
tering strength δ. To indicate the concentration dependence, for example, we show in Fig. 2.8
the density of states N(ω) for a fixed scattering strength δ = −0.004 and concentrations varying
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Figure 2.8: Density of states N(ω) for the Holstein alloy in the vicinity of the first polaronic subband.
The polaron parameters are λ = 0.98 and α = 0.25 (see Table 2.1) and η = 10−4. The scattering strength
δ = −0.004 and the concentration of the B atoms varies from c = 0.0 (bottom) to c = 1.0 (top) in steps of
∆c = 0.2. For clarity the density of states corresponding to different concentrations are artificially shifted
along the vertical axis.

from the pure A crystal (c = 0) to the pure B crystal limit (c = 1). Note, first, the noticeable
distortions of the density of states (at the high-energy edge) despite the fact that δ is much
smaller than the polaronic subband width and, second, the lack of c ↔ 1 − c symmetry. That
rather small amounts of disorder suffice to restructure the high-energy edge can be also seen in
Fig. 2.9, where the lower panel shows the density of states and the imaginary part of the coherent
potential for c = 0.5 and three different scattering strengths δ.

It is not necessary to present an exhaustive investigation of the alloying-induced spectral
changes in the whole c − δ parameter plane. The data presented suffice already to show that
the modifications of the lowest polaronic subband are very similar to the ones found in an AB
alloy with an artificial steeple-like bare density of states. [119] Indeed, the broken c ↔ 1 − c
symmetry, the appearance of a B mini-subband at scattering strengths much smaller than the
polaronic subband width, and the asymmetry between the component density of states have their
counterparts in this artificial steeple alloy.

In the artificial steeple alloy, as well as in the Holstein alloy, states comprising the steeple-like
structure in the density of states are very susceptible to impurity scattering. For the Holstein
alloy this is intuitively clear, because the steeple in the density of states contains the states
corresponding to the flat part of the dispersion. As indicated above, due to the large phonon
admixture, these states might be temporarily localized, which suggests that they feel the on-site,
alloy-type disorder much more strongly than the other states. The discussion of the diffusion
properties in the next subsection will substantiate this intuitive picture.

2.3.2 Diffusion Properties

The spectral properties in the vicinity of the high-energy edge of the lowest polaronic subband
suggest that this part of the spectrum is very susceptible to a localization transition. In subsection
2.2.1, we emphasized that the problem of localization of a polaron should be methodologically



2.3 Numerical Results I [4] 57

−1.15 −1.14 −1.13 −1.12 −1.11

ω

−0.8

−0.4

0.0

0.4
Im

v 
  
N

0.0

0.5

1.0

P

δ=0.0
δ=−0.004
δ=−0.008

Figure 2.9: The lower panel shows the density of states N(ω) and the imaginary part of the coherent
potential Imv(ω) for the Holstein alloy in the vicinity of the high-energy edge of the first polaronic subband
for c = 0.5 and three different values of the scattering strength δ. The polaron parameters are λ = 0.98
and α = 0.25 (see Table 2.1) and η = 10−4. The corresponding spectrally resolved return probabilities
P (ω, η) are given in the upper panel.

addressed with the same techniques used to investigate the problem of localization of an electron
in a random potential. In particular, we stressed that limη→0 P (ω, η) would be a rigorous criterion
to distinguish itinerant polaronic quasi-particle states from (any) localized polaronic defect states.
We also pointed out, that a rigorous investigation of the localization issue is unfortunately beyond
the DCPA because, within the DCPA, limη→0 P (ω, η) vanishes for all energies ω. Although
localized states cannot be unambiguously identified, it is possible to identify temporarily localized
states through the η-asymptotics of P (ω, η).

To motivate the investigation of the η-asymptotics of P (ω, η), we first emphasize that the
spectrally resolved return probability P (ω, η) contains valuable information about the diffusion
properties not only in the limit η = 0 (which is usually considered [114]) but also for a finite
η > 0. For a correct interpretation of the data, we have to keep in mind, however, that a finite η
broadens all spectral features. In particular, the pole [divergence] in Imv(ω) [Rev(ω)] becomes,
as mentioned in the previous subsection, a Lorentzian [pronounced kink], smearing out the high-
energy edges of the respective bands. A finite η yields therefore small artificial tails extending
into the gap regions. These tails have no direct physical meaning. In the following we analyze,
therefore, the η−asymptotics of P (ω, η) only for energies ω below the respective sharp high-energy
edges obtained for η → 0 (see Fig. 2.6b and the insets of Figs. 2.10–2.12).

The physical content of P (ω, η) can be extracted from Figs. 2.5c, 2.6d, 2.7c, and the upper
panel of Fig. 2.9, where we plot, for the model parameters given in the respective captions,
P (ω, η) for η = 10−4. All the data show that P (ω, η) does not uniformly (in ω) approach zero as
η → 0. Instead, P (ω, η) is substantially enhanced for certain energies ω. Close inspection of the
data shows, moreover, that the maximum of P (ω, η) always occurs slightly below the high-energy
edges of the respective (mini-)subbands, i.e., in the spectral regions where the dispersions become
extremely flat. (This can be most clearly seen in Fig. 2.6.) The enhancement of P (ω, η) is caused
by the band flattening and is therefore a direct measure of the sluggishness of the corresponding
states due to their large phonon admixture. More precisely, because 1/η can be interpreted as a
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Figure 2.10: η−asymptotics of the spectrally resolved return probability P (ω, η) for the Holstein model.
The polaron parameters are λ = 0.98 and α = 0.25 (see Table 2.1). The three sets of curves correspond
to three energies: ω = −1.135,−1.127, and −1.12549 (from bottom to top). Solid [dashes] lines depict
the numerical data [asymptotic expansion given in Eq. (2.61)]. The corresponding density of states for
η = 10−8 is shown in the inset.

characteristic time scale, a large value of P (ω, η) implies that the electron in the state at energy
ω is not yet delocalized on the time scale 1/η. Thus, the η−asymptotics of P (ω, η), i.e., the
way P (ω, η) approaches zero for η → 0, reveals the time scale on which the state at energy ω is
temporarily localized. [Note, once more, we study the η−asymptotics of P (ω, η) only for ω below
the η → 0 high-energy edge and not for energies belonging to the artificial tail which is present
for a finite η.]

In what follows we put these qualitative considerations on a mathematical basis. To that
end, we first note that Eq. (2.6) suggests to interpret f(ω − iη, ω + iη) as a “spectral density”
corresponding to p(2η), the Laplace image of 1/2P (t/2). That is, f(ω − iη, ω + iη) gives the
spectrally resolved diffusion behavior of the electron in the η domain. Accordingly, the counterpart
of f(ω − iη, ω + iη) in the time domain, which we denote by F (ω, t), is the “spectral density”
corresponding to 1/2P (t/2). That is, it gives the spectrally resolved diffusion behavior of the
electron in the time domain.

That the η-asymptotics of P (ω, η) indeed contain the spectrally resolved diffusion behavior
of the electron can be clearly seen in Fig. 2.10, where, for the Holstein model with the polaron
parameters given in Table 2.1, P (ω, η) is plotted as a function of η for three representative energies
ω within the lowest polaronic subband, i.e., for energies below the η → 0 high-energy edge. For
the Holstein alloy, the overall behavior of P (ω, η) is the same. All three curves feature a hump
whose shape and position strongly depend on ω. For ω in the immediate vicinity to the high-
energy edge of the polaronic subband, the hump appears at a very small η and is very sharp. Far
inside the subband, in contrast, the maximum appears at a larger η and is less pronounced. The
distinct ω dependence of the hump indicates different charateristic time scales for the diffusion
behavior of the respective states.

To explicitly extract this time scale, we perform an asymptotic expansion of P (ω, η) for small
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Figure 2.11: Spectrally resolved delocalization time T0(ω) for the Holstein model in the vicinity of the
high energy edge of the first polaronic subband. The polaron parameters are λ = 0.98 and α = 0.25 (see
Table 2.1). The inset shows the density of states for η = 10−8. Note, the data for T0(ω) are for energies
below the η → 0 high-energy edge.

η. The data shown in Fig. 2.10 suggest making the following ansatz

P (ω, η) ≈ K(ω)

η
η0(ω)

(1 + η
η0(ω) )

1+ν(ω)
, (2.61)

and determining the parameters K(ω), η0(ω), and ν(ω) through a least-square fit. The dashed
lines in Fig. 2.10 show that this approach works reasonably well. Using the definition of P (ω, η)
given in Eq. (2.9) and employing a general mathematical theorem about Laplace transforms [120],
we obtain the asymptotic behavior of F (ω, t) for large t [note, since we measure energy in units
of 2J , time is mearured in units of (2J)−1]:

F (ω, t) ≈ K(ω)
(tη0(ω))ν(ω)

2Γ(1 + ν(ω))
e−tη0(ω), (2.62)

where Γ(x) denotes the Gamma function.
From this equation we infer that the parameter η0(ω) gives rise to a characteristic time scale.

Defining T0(ω) = 1/η0(ω), we see, in particular, that for t � T0(ω) the function F (ω, t) decays
exponentially to zero. For t� T0(ω), however, F (ω, t) is finite, implying that the state at energy
ω is not yet delocalized. It is therefore natural to interprete T0(ω) as a (spectrally resolved)
delocalization time characterizing temporary localization, i.e., T0(ω) quantifies the “sluggishness”
of the state at energy ω.

In Fig. 2.11 we plot T0(ω) for the Holstein model in the vicinity of the high-energy edge of the
lowest polaronic subband. The polaron parameters are the same as in Fig. 2.5 (see Table 2.1). In
the immediate vicinity of the high-energy edge, where the dispersion becomes extremely flat due
to the high phonon admixture in the states, the delocalization times increase roughly three orders
of magnitude (but do not diverge). That is, the states in the flat part of the polaronic subband
appear to be temporarily localized on the time scales where the rest of the states are already
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delocalized. Clearly, the band flattening and the enhanced delocalization times are correlated
and have, moreover, the same microscopic origin, namely the increased phonon admixture in the
states at the high-energy edge of the subband. More formally, it is the divergence-induced strong
ω−dependence of Rev(ω) for ωm ≤ ω ≤ ωh that causes the large delocalization times at the
high-energy edge of the lowest polaronic subband.

At this point it is appropriate to comment on the work of Hotta and Takada [121] who
suggested that for energies where the self-energy (or, in our case, the coherent potential) diverges,
states would be localized because of the infinitely strong electron-phonon coupling. They studied
the half-filled (ordered) Holstein-Hubbard model, but their conclusion is quite general and should,
if valid, hold for any model which produces divergences in the self-energy. Such divergences are,
however, always inside a gap. In fact, they signal the presence of a gap, as can be seen, e.g., in
Figs. 2.5 and 2.6, that is, there are no states at the divergence energy which could be localized.
In contrast, our investigation suggests that, it is the effect the divergence has on states within the
spectrum, namely, the band flattening it causes below the high-energy edge of the lowest polaronic
subband, which could perhaps induce localization in that particular energy range. Within the
DCPA, however, the effect is too weak, giving rise only to large but finite delocalization times
and, hence, only to temporary localization.

It has been also suggested [113] that, if, due to some mechanism, a finite density of states
appears at the divergence energy, the corresponding states would be localized. A finite η simulates
such a mechanism. However, as can be seen in Fig. 2.6, the maximum of P (ω, η) does not occur in
the tail but roughly at the maximum of the subband density of states. Therefore, at least within
the DCPA, it is the band flattening and not the tail which is responsible for large delocalization
times.

The concept of the delocalization time provides an appealing explanation of the spectral
changes induced by alloying. In the previous subsection we have seen that the high-energy
edge of the polaronic subband responds much more strongly to alloying than the bottom of the
subband. From the perspective of the delocalization time this is now clear, because the high-
energy edge contains “sluggish” defect-like states, whose large delocalization times make them
feel the randomness of the on-site potential particularly strongly.

The delocalization times are also modified due to alloying. This is shown in Fig. 2.12 for a
particular set of alloy parameters, c = 0.5 and δ = −0.002. The polaron parameters are the same
as before (see Table 2.1). In the previous subsection we have seen that the main effect of alloying is
the formation of two mini-subbands with, due to the large phonon admixture in the states, rather
flat dispersions at the two high-energy edges. As a consequence, the delocalization times are now
enhanced in two narrow energy regions: At the high-energy edge of the A mini-subband and at the
high-energy edge of the B mini-subband. Note, as in the case without disorder, the enhancement
of the delocalization times is due to the band flattening effect, i.e., it is driven by strong on-site
electron-phonon correlations. Even with the assistance of electron-impurity scattering, the on-site
correlations are however not strong enough to produce divergent delocalization times.

The numerical results for the delocalization times suggest that we may tentatively distinguish
two types of states: “Fast” quasi-partice-like states and “sluggish” defect-like states. In the Hol-
stein model, defect-like states appear at the high-energy edge of the polaronic subband. Whereas
in the Holstein alloy, defect-like states occur at the high-energy edges of the two mini-subbands.
With and without disorder, strong on-site electron-phonon correlations are responsible for the
formation of defect-like states. Because the delocalization times of the defect-like states are sev-

eral orders of magnitude larger than the delocalization times of the quasi-particle-like states, it
is moreover conceivable that the sluggishness of the defect-like states may anticipate the onset of
localization.
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Figure 2.12: Spectrally resolved delocalization time T0(ω) for the Holstein alloy in the vicinity of the
high energy edge of the first polaronic subband for c = 0.5 and δ = −0.002. The polaron parameters are
λ = 0.98 and α = 0.25 (see Table 2.1). The inset shows the density of states for η = 10−8. Note, the data
for T0(ω) are for energies below the η → 0 high-energy edge.

2.4 Critique

Up to this point, we have provided a self-contained description of the DCPA and employed it to
investigate the dynamics of a single electron in the Holstein model augmented by site-diagonal,
binary-alloy type disorder (Holstein alloy). Using multiple-scattering theory, the conventional
CPA technique, we derived the DCPA equations for the averaged two- and four-point functions
and emphasized the main approximation involved: namely, after each hop from one lattice site
to another the electron’s spatial memory is erased. We visualized the lack of spatial memory in
terms of self-avoiding paths and employed this picture to give an intuitive explanation why the
DCPA becomes exact for a system with infinite coordination number. We also mentioned that
for a single electron the DCPA is identical to the dynamical mean field theory.

Our numerical results focused on the intermediate electron-phonon coupling regime, where
polaronic subbands start to emerge. We investigated, for representative parameter sets, the
effect of alloying on the high-energy edge of the lowest polaronic subband. These states are very
susceptible to impurity scattering because of their large phonon admixture, which leads to a
flat dispersion in this part of the spectrum, and, as a consequence, to a steeple-like density of
states. The observed modifications of the spectral properties are therefore reminiscent of typical
CPA results obtained for a model with a steeple-like density of states: A lack of c ↔ 1 − c
symmetry, an appearance of mini-subbands in the vicinity of the steeple (i.e., high-energy edge)
of the subband for scattering strengths much smaller than the subband width, and an asymmetry
in the component density of states.

The most notable result is, however, the large enhancement of the spectrally resolved return
probability P (ω, η) for small but finite η in the narrow energy regions where the dispersion of
the polaron states becomes extremely flat. This occurs in the absence (presence) of alloy-type
disorder at the high-energy edge(s) of the polaronic subband (mini-subbands). To elucidate the
physical meaning of this strong enhancement, we analyzed the η−asymptotics of P (ω, η) and
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introduced the concept of a spectrally resolved delocalization time which is the characteristic
time scale on which, at a given energy, the electron leaves a given site. The strong enhancement
of P (ω, η) in the flat part(s) of the subband (mini-subbands) signals large delocalization times.
According to their delocalization times we could thus classify, within the limitations of the DCPA,
“fast” quasi-particle-like polaron states at the bottom and “sluggish” defect-like polaron states
at the top of the subband (mini-subbands).

Within the DCPA, we cannot decide, however, whether “defect-like”, i.e., temporarily lo-
calized states are in fact “defect”, i.e., localized states. At this point it is important to recall
that the DCPA is based on the embedding of a single impurity site into an homogenous effective
medium. Spatial fluctuations, the main driving forces for Anderson localization, are wipped out.
In particular, the single-site approximation implies for the calculation of the spectrally resolved
return probability to ignore maximally crossed diagrams. They are however expected to yield
particularly large contributions to the return probability. It is therefore conceivable that the
DCPA results for the delocalization times of polaron states are only lower bounds and temporar-
ily localized states may in fact be localized states. Clearly to further elucidate the interplay
between polaron formation and Anderson localization more sophisticated methods, capable of ac-
counting spatial fluctuations, are required. In the second half of this chapter, we present such an
approach. It is based on the statistical dynamcial mean field approximation, which, in contrast to
the DCPA, maps the lattice problem not on to a single self-consistently embedded impurity site
but on to an ensemble of self-consistently embedded impurity sites, which is then characterized
in terms of probability.

2.5 Statistical Dynamical Mean Field Theory (statDMFT) [5–7]

This section gives a general description of the statistical dynamical mean field approximation
(statDMFT). In contrast to the DMFT (DCPA), the statDMFT maps the lattice problem not on
to a single self-consistently embedded impurity site but on to an ensemble of self-consistently em-
bedded impurity sites. Spatial fluctuations due to quenched disorder are explicitly incorporated.
As a result, the statDMFT enables us to distinguish itinerant polaronic quasi-particle states
from localized polaronic defect states. Spatial fluctuations due to dynamic disorder, induced by
electron-phonon scattering, are however beyond the statDMFT.

2.5.1 Disorder and Interactions

Polaron formation (self-trapping) in a disordered environment is one example of physical problems
where interaction and disorder effects interfere with each other. The most prominent example
is electron transport in the impurity band of doped semiconductors. Especially near the metal-
insulator transition, Coulomb interaction and disorder effects cannot be separated, and it is
suspected that it is precisely the interplay of both, which leads to new physical phenomena, for
instance, to the formation of local moments [122] or to a new emerging magnetic phase. [123]

There is no method which could be mechanically used to investigate disordered interacting sys-
tems beyond perturbation theory. In particular, the strongly disordered regime, where Anderson
localization takes place, is beyond the applicability of most theoretical techniques. Nevertheless,
there have been various attempts to generalize methods, which have been successfully employed
to investigate Anderson localization of noninteracting electrons, in such a way that they can be
also utilized in situations where interactions are important. Most efforts have been directed to-
wards electrons interacting via short- and/or (bare) long-range Coulomb potentials, with a few
exceptions dealing with electrons coupled to phonons. [4, 5, 93–97]
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After Anderson’s original work [88] and Mott’s suggestion [92] of its connection to transport
properties in amorphous semiconductors, three principal techniques have been cultivated to study
Anderson localization quantitatively in further detail: (i) direct numerical simulations [124], (ii)
diagrammatic techniques, [125] and (iii) field-theoretical approaches. [126] Subsequently, all three
techniques have been applied to interacting systems as well. Direct numerical simulations are
conceptually the simplest approach. However, they are restricted to small system sizes and
usually to a truncated configuration type treatment of the Coulomb interaction. To this category
belong, for instance, all attempts to study the localization of two interacting electrons in the
background of a frozen Fermi sea. [127] In the case of electron-phonon interaction, the size of
the phonon Hilbert space is the limiting factor. Diagrammatic methods work usually only for
weak interactions. [128] In principle, strong interactions can be also treated with diagrammatic
techniques, if they are based on renormalized expansions, but the proliferation of diagrams makes
the practical implementation very often rather complicated if not impossible. Field-theoretical
techniques, in contrast, for instance based on the construction of an effective field theory for
the low-energy, long-wavelength excitations [129, 130], albeit very promising, operate in abstract
spaces, with order parameter functions whose physical content is sometimes hard to grasp.

Anderson [88], on the other hand, used a completely different approach. Instead of focusing on
the calculation of averaged correlation functions, he emphasized that, in general, average values
are not representative, especially in the strongly disordered regime. All variables of the theory,
in particular, observables, should be characterized by distributions. Specifically, he examined,
in probabilistic terms, the convergence properties of the renormalized perturbation series for
the local hybridization function appearing in a locator expansion of the local Green function.
Towards that end, he gave asymptotic estimates for the higher order terms of the series. The
mathematical arguments are quite involved and have been further clarified later, most notably,
by Thouless [89,131] and Economou and Cohen. [114] A simplified probabilistic approach, based
on the self-consistent solution of the second order renormalized perturbation series, started with
Abou-Chacra, Anderson and Thouless. [132] It proved to be a very powerful tool, applicable not
only to substitutionally [133, 134] but also to topologically disordered materials. [135, 136]

The flexibility of the simplified probabilistic analysis of the renormalized perturbation series
has been recently utilized by Dobrosavljević and Kotliar [98] to analyse various physical properties
of disordered electrons with strong local electron-electron correlations. [137,138] They successfully
combined the dynamical mean field approximation for the description of (local) correlations with
Abou-Chacra, Anderson, and Thouless’s probabilistic treatment of the spatial fluctuations due
to randomness. The statDMFT maps the original lattice problem on to an ensemble of impu-
rity problems, which is then analysed in terms of probability. In contrast to the field-theoretical
approaches, the method is very intuitive and conceptually simple. Moreover, it captures local
interaction processes nonperturbatively. It is therefore capable of addressing issues beyond stan-
dard diagrammatic perturbation theories. Numerically it is somewhat involved, but not restricted
to small system sizes as direct numerical simulations. The main drawback of the method is its re-
striction to local, short-range interactions. In principle, long-range interaction processes could be
incorporated, but only at the level of static molecular fields (for instance, in the case of Coulomb
interaction a Hartree term would appear), which is probably not sufficient for a complete investi-
gation of the interplay between long-range interactions and disorder. For the Anderson-Holstein
model, however, where the (electron-phonon) coupling is local, the statDMFT’s problem to deal
with long-range interactions does not occur and the statDMFT is expected to capture the essential
physics of the interplay between Anderson localization and self-trapping.
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Figure 2.13: In the cavity method all sites but one are integrated out. For that purpose the lattice action
is divided into three parts: S = Si + S(i) + ∆S(i), where Si is the action on the isolatated site i (denoted
by an open circle), S(i) is the lattice action with site i excluded (full circles), and ∆S(i) is that part of the
action, which connects site i with the rest of the lattice (dashed lines).

2.5.2 General Formalism

The derivation of the statDMFT for a generic model of interacting electrons has been given by
Dobrosavljević and Kotliar. [98] It is based on the cavity method and applies to arbitrary lattices,
temperatures, and densities. To make our presentation self-contained and to fix our notation,
we outline in this subsection the cavity method, carefully paying attention to the probabilistic
interpretation of the statDMFT and to specifics due to electron-phonon coupling. In Appendix
D we provide, for a single electron on a Bethe lattice at zero temperature, an alternative, less
general derivation based on the multiple-scattering techniques, which we used to obtain in Section
2.2 the DCPA equations for a single electron in the Anderson-Holstein model.

The starting point is the partition function

Z =

∫

∏

i,σ

Dc†iσDciσDb
†
iDbie−S[c†,c,b†,b], (2.63)

where the action, for a fixed realization of the on-site energies, is given by

S[c, c†, b, b†] =

∫ β

0
dτ
∑

j,σ

{

c†jσ(τ)[∂τ − µ]cjσ(τ) + b†j(τ)∂τ bj(τ)

+ H[c, c†, b, b†](τ)
}

. (2.64)

All sites but one are now integrated out, yielding an effective single-site action. For that
purpose, the action is split into three parts: S = Si + S(i) + ∆S(i), where Si is the action of the
isolated site i, S(i) is the action for the system with site i excluded, and

∆S(i) = −
∫ β

0
dτ
∑

l,σ

{

c†lσ(τ)ηlσ(τ) + η†lσ(τ)clσ(τ)

}

, (2.65)

with ηlσ = Jliciσ, is the part of the action which connects site i to its neighbors (see Fig. 2.13).
Identifying ∆S(i) as a source term to generate cavity Green functions, i.e. Green functions

for the lattice with site i removed, the effective single-site action S(i), defined by

e−S(i) =
1

Z

∫

∏

j 6=i,σ

Dc†jσDcjσDb
†
jDbje−[Si+S(i)+∆S(i)], (2.66)

can be written as

S(i) = S0 + Si[c
†
iσ , ciσ, b

†
i , bi] −W (i)[η†, η], (2.67)
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where we explicitly indicated the fields on which the various terms depend. The first term S0 is
a constant. While the second term, the action for the isolated site i, contains only the fields on
site i, the third term,

W (i)[η†, η] = 1 +
∑

n

∫ β

0
dτ1...

∫ β

0
dτn

∫ β

0
dτ ′1...

∫ β

0
dτ ′nA

[2n](τ1, ..., τ
′
n), (2.68)

with

A[2n](τ1, ..., τ
′
n) = (−)n

∑

l1,σ1

...
∑

l′n,σ′
n

η†l1σ1
(τ1)...η

†
lnσn

(τn)G
(i)
l1σ1...l′nσ′

n
(τ1, ..., τ

′
n)

× ηl′1σ′
1
(τ ′1)...ηl′nσ′

n
(τ ′n), (2.69)

involves fields from all sites.

The effective single-site action S(i) contains the full information of the original lattice action.

Integrating out all sites but one introduces a 2n−point cavity Green functionG
(i)
l1σ1...l′nσ′

n
(τ1, ..., τ

′
n).

This function is extremely involved and approximations are required to obtain feasible equations.
A crucial simplification can be made by truncating Eq. (2.68) after the n = 1 term. This
leads to a quadratic effective single-site action, similar to the DMFT [112], where it was further
shown that the truncation becomes exact for lattices with infinite coordination number. As a
consequence, although the cavity construction is performed for lattices with a finite coordination
number, interaction processes, here due to the electron-phonon coupling, are treated as if the
lattice had infinite coordination number. As a result of the truncation, the statDMFT becomes
a mean field theory.

Keeping only the n = 1 term, Eq. (2.68) depends only on the electronic fields on site i and
reduces to

W (i)[c†i , ci] = 1 −
∫ β

0
dτ

∫ β

0
dτ ′

∑

σ

c†iσ(τ)Hiσiσ(τ − τ ′)ciσ(τ ′), (2.70)

with the hybridization function

Hiσiσ(τ − τ ′) = J2
∑

lm

G
(i)
lσmσ(τ − τ ′). (2.71)

The information of the lattice is now contained in the two-point cavity Green function G
(i)
lσmσ(τ −

τ ′), describing all paths from site l to site m without passing through site i (note that due to the
definition of Jlm, both sites l and m are neighboring sites to i).

Absorbing irrelevant constants, which do not affect the electron dynamics, into Z0, the effective
single-site action reads

S(i) =

∫ β

0
dτdτ ′

∑

σ

c†iσ(τ)

{

[∂τ + εi − µ]δ(τ − τ ′) +Hiσiσ(τ − τ ′)
}

ciσ(τ ′)

+ Sph(i) + Sint(i), (2.72)

with

Sph(i) =

∫ β

0
dτb†i (τ)[∂τ + Ω]bi(τ) (2.73)
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and

Sint(i) = −
∫ β

0
dτ
√

EpΩ[bi(τ) + b†i (τ)]niσ(τ). (2.74)

According to Eq. (2.72), the interaction between electrons and phonons takes place only on site
i, which, due to the hybridization function Hiσiσ(τ), is however embedded into the full lattice.

Although, for a given Hiσiσ(τ), any local Green function could be obtained from S(i), the set
of equations is not closed. This can be most clearly seen from the identity [98]

∫ β

0
dτ ′Glσiσ(τ − τ ′)Giσmσ(τ ′) =

∫ β

0
dτ ′
{

Glσmσ(τ − τ ′) −G
(i)
lσmσ(τ − τ ′)

}

Giσiσ(τ ′), (2.75)

which connects the cavity Green function G
(i)
lσmσ(τ) with the lattice Green function Glσmσ(τ).

Therefore, the hybridization function Hiσiσ(τ) defined in Eq. (2.71) is a functional of the full,
nonlocal lattice Green function, which of course cannot be obtained from the effective single-site
action S(i).

To close the set of equations, Dobrosavljević and Kotliar [98] suggested to approximate in Eqs.
(2.71) and (2.75), for a given realization of disorder, the full lattice Green function G lσmσ(τ) by
the bare lattice Green function G0

lσmσ , with on-site energies shifted by the local self-energy. In
Matsubara space the substitution reads

Giσjσ(iωn) → G0
iσjσ(iωn)

∣

∣

∣

∣

εi→εi+Σiσ(iωn)
, (2.76)

with Σiσ(iω) defined by

Giσiσ(iωn) =
1

iωn − εi + µ−Hiσiσ(iωn) − Σiσ(iωn)
, (2.77)

which is the Fourier transformed Dyson equation for the local Green functionGiσiσ(τ) = −〈Tτ ciσ(τ)c†iσ(0)〉S(i)

as obtained from the effective single-site action S(i). Note, the substitution Eq. (2.76) is not
exact, because in general the interaction self-energy is nonlocal. Besides the truncation of the
effective single-site action, this is the second major approximation invoked by the statDMFT.

Now the set of Eqs. (2.71)–(2.77) is closed and constitutes the basic statDMFT equations,
applicable to arbitrary temperatures, densities, and lattices. A self-consistent solution yields the
local Green function Giσiσ(iωn).

It is crucial to realize that, due to the randomness of the on-site energies εi, the local Green
functionGiσiσ(iωn), the local self-energy Σiσ(iωn), and the local hybridization functionHiσiσ(iωn)
are random variables. More specifically, interpreting the site indices as labels enumerating the
elements of random samples, Giσiσ(iωn), Σiσ(iωn), andHiσiσ(iωn) can be understood as particular
realizations of the random variables Gloc

σ (iωn), Σloc
σ (iωn), and H loc

σ (iωn), respectively. Thus,
equations (2.71)–(2.77) are in fact stochastic recursion relations, from which random samples
for the random variables Gloc

σ (iωn), Σloc
σ (iωn), and H loc

σ (iωn) can be constructed. The iterative
solution of Eqs. (2.71)–(2.77) is therefore equivalent to the calculation of the distribution for the
random variables Gloc

σ (iωn), Σloc
σ (iωn), and H loc

σ (iωn).

Starting from an initial sample {Hiσiσ(iωn)} for the local hybridization function H loc
σ (iωn), a

sample {Giσiσ(iωn)} for the local Green function Gloc
σ (iωn) is obtained by solving the quantum

mechanical (many-body) problem defined by S(i) [cf. Eqs. (2.72)–(2.74)]. The Dyson equation
(2.77) for the local Green function yields then a sample {Σiσ(iωn)} for the local self-energy
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Figure 2.14: K = 2 Bethe lattice.

Σloc
σ (iωn), from which a new sample for the hybridization function is calculated from Eqs. (2.76),

(2.75), and (2.71). Going through this loop iteratively, the random samples are successively
updated until a fix point is reached.

The iteration is numerically very involved for Bravais lattices (even for a simple cubic lattice),
in particular the construction of the lattice Green function through Eq. (2.76). In practice, the
statDMFT is therefore formulated on a Bethe lattice, which is an infinite, loop-free graph with
connectivity K (where K + 1 is the number of next neighbors, i.e. the coordination number Z).
Besides the reduced numerical complexity, the Bethe lattice has the additional advantage that
the statistical dependence of the random variables can be analysed in detail.

Finally, we mention that the statDMFT reduces to the DMFT for lattices with large coordi-
nation number. For the particular case of a Bethe lattice, this is shown in Appendix E.

2.5.3 Specification to a Bethe Lattice

Due to the absence of closed loops, the hybridization function on the Bethe lattice depends only
on the local cavity Green function, which can be again obtained from an appropriate effective
single-site action. As a result, the statDMFT simplifies enormously on a Bethe lattice.

Specifically for the K = 2 Bethe lattice with nearest neighbor coupling shown in Fig. 2.14,
the hybridization function becomes

Hiσiσ(iωn) = J2
∑

j NN i

G
(i)
jσjσ(iωn), (2.78)

where now only local cavity Green functions appear. This is the crucial simplification because

G
(i)
jσjσ(iωn) can be obtained from the effective single-site action S (i)(j), which has the same

structure as S(j), except that the hybridization function is now given by

H
(i)
jσjσ(iωn) = J2

∑

l 6=i NN j

G
(ji)
lσlσ(iωn). (2.79)

In addition, on a Bethe lattice, because of the absence of closed loops, the exclusion of site j

already ensures that site i is not visited, i.e., G
(ji)
lσlσ(iωn) = G

(j)
lσlσ(iωn). Accordingly, except for

the ‘base’ site i, the hybridization function for all other sides is simply given by the sum over the
“forward” cavity Green function. For the base site, in contrast, all the neighboring cavity Green
functions contribute [see Eq. (2.78)].

As a consequence, taking i as the base site, from which the cavity construction starts, gives
for the Dyson equation for the local base site Green function

Giσiσ(iωn) =



iωn + µ− εi − J2
∑

j NN i

G
(i)
jσjσ(iωn) − Σiσ(iωn)





−1

, (2.80)
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whereas the Dyson equation for the local Green function at all other sites reads

G
(i)
jσjσ(iωn) =



iωn + µ− εj − J2
∑

l 6=i NN j

G
(j)
lσlσ(iωn) − Σ

(i)
jσ(iωn)





−1

. (2.81)

Note, all cavity Green functions G
(i)
jσjσ(iωn) obey Eq. (2.81); hence they are identically dis-

tributed. Moreover, because the cavity self-energy Σ
(i)
jσ(jωn) is obtained from S(i)(j), containing

only ‘forward’ sites with respect to site j, the cavity Green function are also statistically inde-

pendent and G
(i)
jσjσ(iωn) can be interpreted as a particular realization of the random variable

Gcav
σ (iωn). The statistical dependence between cavity Green functions at different energies is an-

other issue. Naturally, it depends on the interaction processes and the particular approximation
employed to calculate the local self-energy (see below).

In principle the base site self-energy Σiσ(iωn) and the cavity self-energy Σ
(i)
jσ(iωn) are different.

If, in the spirit of the DMFT, we neglect however this difference and identify Σiσ(iωn) with

Σ
(i)
jσ(iωn), Eq. (2.80) reduces for i and j next neighbor sites to

Giσiσ(iωn) =
1

[G
(j)
iσiσ(iωn)]−1 − J2G

(i)
jσjσ(iωn)

. (2.82)

Within this approximation, the local Green function Giσiσ(iωn) is expressed in terms of two

statistically independent random variables, G
(j)
iσiσ(iωn) and G

(i)
jσjσ(iωn). The identification of

Σjσ(iωn) with Σ
(i)
jσ(iωn) is on the Bethe lattice analogous to the substitution Eq. (2.76) for

Bravais lattices. Even on the Bethe lattice, the statDMFT involves therefore two approximations:
the truncation of the effective single-site action and the conflation of the interaction self-energies
[reminiscent of the substitution Eq. (2.76) for Bravais lattices].

2.5.4 Localization Criterion

In subsection 2.2.1 we introduced the spectrally resolved return probability limη→0 P (ω, η) as
a criterion to distinguish between itinerant and localized states. In principle, the spectrally
resolved return probability, which is an averaged four-point function, could be also calculated
within the statDMFT. An alternative localization criterion, based on the probability distribution
of two-point functions, is however more suitable from a calculational point of view.

A natural measure of the itinerancy suggested by the effective single-site action S(i) is the
total tunneling rate from a given site i defined by the imaginary part of the hybridization function,

Γiσ(ω) = J2
∑

j NN i

N
(i)
jσ (ω), (2.83)

where N
(i)
jσ (ω) is the local cavity density of states (LCDOS), i.e., the imaginary part of the cavity

Green function G
(i)
jσjσ(ω). Obviously, a finite tunneling rate Γiσ(ω) implies an extended state at

energy ω. Localized states, in contrast, lead to a vanishing tunneling rate. The tunneling rate

vanishes if the LCDOS N
(i)
jσ (ω) vanishes, which, in this sense, is a transport quantity, and could

by itself be used as a kind of “order parameter” for localization. The tunneling rate Γiσ(ω) as

well as the LCDOS N
(i)
j (ω) are random variables and whether they vanish or not depends on

their distribution. The shape of the distributions has to change therefore dramatically at the
localization transition.
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To understand why the shape of the distribution has to change, it is convenient to look at the
distribution of a related quantity, the local density of states (LDOS), defined by

Niσ(ω) = − 1

π
ImGiσiσ(ω), (2.84)

because it directly reflects the spatial dependence of the wave function: For an extended state
at energy ω, where the weight of the wave function is more or less the same on every site, the
distribution of the LDOS at energy ω is symmetric and the most probable value coincides with
the arithmetic mean value (average value). Localized states with energy ω, on the other hand,
have substantial weight only on a few sites. The distribution is therefore extremely asymmetric,
with a most probable value much smaller than the arithmetic mean value, which is therefore not

representative anymore. Since the LDOS Njσ(ω) is closely related to the LCDOS N
(i)
jσ (ω), the

distributions for the LCDOS and the tunneling rate undergo the same characteristic change at
the localization transition as the distribution for the LDOS.

A priori it is not clear by what moment (or moments) the asymmetric distributions should
be characterized. At this point it is useful to anticipate that distributions, in particular the
distribution for the local hybridization function, can be used to calculate averaged transport
quantities, such as the dc conductivity or the return probability (see below). The most probable
value, i.e., the maximum of the distribution, is then expected to play a crucial role. [Note,
averaged four-point functions (transport quantities) capture the localization effect, in contrast to
averaged two-point functions.] It would be therefore natural to focus on the most probable values.
The drawback is, however, that they cannot be directly obtained from the random samples; they
require the explicit construction of histograms. More convenient quantities seem to be the so-
called typical values [98], which are simply the geometric mean values of the random samples
and yet capture the asymmetry of the distributions reasonably well. Therefore, we focus on the
typical values.

In particular, we consider the distribution of the LDOS and distinguish localized from ex-
tended states by a detailed investigation of the average LDOS,

Nave
σ (ω) =

1

Ns

∑

i

Niσ(ω), (2.85)

and the typical LDOS

N typ
σ (ω) = exp

[

1

Ns

∑

i

logNiσ(ω)

]

. (2.86)

Specifically, we classify states at energy ω with N ave
σ (ω) 6= 0 as localized if N typ

σ (ω) → 0 and as
extended if N typ

σ (ω) 6= 0. Note, the LDOS is defined for η → 0. The numerical solution has to
take this into account (see below). It should be stressed, Mirlin and Fyodorov [139] also used the
LDOS as an order parameter for the Anderson transition.

2.5.5 Single Electron and T=0 Limit

The easiest way to obtain the zero temperature, single-particle limit of the statDMFT equations
[Eqs. (2.71)–(2.77)] is to work with an effective single-site Hamiltonian, instead of an effective
single-site action. Neglecting the spin, which for a single electron is irrelevant, the effective
Hamiltonian reads

H(j)(i) = εjc
†
jcj + Ωb†jbj −

√

EpΩ(b†j + bj)c
†
jcj +

∑

ν

Eνa
†
νaν +

∑

ν

[Tνja
†
νcj +H.c.], (2.87)
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where the notation indicates that the Hamiltonian models the dynamics encoded in the cavity
effective single-site action S(j)(i).

The Hamiltonian representation of S(j)(i) is not unique. In Eq. (2.87) the embedding is
given by the hybridization with an auxiliary field aν . The auxiliary parameters Eν and Tνj have
no physical meaning, they just parameterize the hybridization function in terms of a spectral
representation:

H
(i)
jj (iωn) =

∑

ν

|Tν |2
iωn − µ− εj −Eν

. (2.88)

For a given set of parameters {Eν , Tνj}, i.e. hybridization function Hjj(iωn), the local self-
energy due to electron-phonon coupling Σi(iωn) can be deduced from Eq. (2.87). For finite
densities, this can be done only by some approximation, introducing further uncertainties into
the approach. For a single electron, however, the interaction self-energy can be obtained exactly
in the form of a continued fraction [104,113], valid over the whole range of parameters (see Section
2.2). Thus, for a single electron, no further approximations are required.

To be more specific, we calculate from Eq.(2.87) the single-electron Green function for T = 0,
using the continued fraction expansion for the electron-phonon self-energy, identify then this
Green function with the zero temperature, single-electron limit of the cavity Green function in
Eq. (2.81) to obtain (z = ω + iη)

G
(j)
ii (z) =

1

[Fii(z)]
−1 − ΩEp

[Fii(z − 1Ω)]−1 − 2ΩEp

[Fii(z − 2Ω)]−1 − 3ΩEp

...

, (2.89)

with

Fii(z) =



z − εi − J2
∑

j

G
(i)
jj (z)





−1

. (2.90)

The local Green function follows from Eq. (2.82), setting again iωn + µ→ z = ω + iη,

Gii(z) =
1

[G
(j)
ii (z)]−1 − J2G

(i)
jj (z)

. (2.91)

According to the interpretation given in the previous subsection, Equations (2.89)–(2.91)
constitute stochastic recursion relations for a random sample for the local Green function G loc

σ (z).
Note, Green functions with shifted energy appear in the continued fraction. They satisfy the same
recursion relations, with energy shifted to z−qΩ. In Appendix D we show how the (single electron,
T = 0) Eqs. (2.89)–(2.91) can be directly obtained with the multiple-scattering techniques, which
we employed to derive the DCPA equations for a single electron in the Anderson-Holstein model.

For a fixed energy z − qΩ, the local Green functions Gii(z − qΩ) are identically distributed.
They are however not independent. As a consequence, for each energy z−qΩ, we have to construct

a separate random sample {G(i)
jj (z−qΩ)} (with j = 1, ..., Ns and q = 0, 1, ...,M), starting from an

initial sample, which we successively update via a Monte Carlo algorithm, similar to the schemes
described by other authors [94,132], drawing the random variables on the rhs of Eq. (2.89) from
the corresponding random samples created by the iteration step before. Iterating this process
a sufficient number of times yields, as a fixed point of the stochastic recursion relations, a self-
consistent random sample for the cavity Green function at energy z − qΩ. The self-consistent
random samples are then used to directly determine average and typical values of the respective
random variables, or, in the form of histograms, the distributions associated with them.
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2.6 Numerical Results II [7]

This subsection presents statDMFT results for a single electron in the Anderson-Holstein model
at zero temperature. We solve the statDMFT equations on a Bethe lattice where, as mentioned
previously, the numerical effort is manageable. As in other areas of statistical physics, the Bethe
lattice calculation has the status of a mean field calculation for Bravais lattices. We expect
therefore our results to be qualitatively valid for any Bravais lattice with d ≥ 3.

For reasonable numerical accuracy, the sample size Ns, which should not be confused with the
actual size of the Bethe lattice, but instead gives the precision with which we construct the random
sample (cf. distributions), has to be sufficiently large. Typical sample sizes are Ns ≈ 50 000. The
maximum depth M of the continued fraction, which describes the maximum number of virtual
phonons in the lattice, has to be large enough in order to capture polaron formation. As a rough
estimate we use M ≈ 5g2, where g2 = Ep/Ω is approximately the average number of virtual
phonons comprising the phonon cloud of the polaron.

To distinguish localized from extended states, it is crucial to investigate the stochastic recur-
sion relations in the limit η → 0. [132] Numerically this seems delicate. However, initializing the
iteration loop with a finite imaginary part of the cavity Green functions, the stochastic recursion
relations can be iterated without problems for η = 0. [140] The correct, self-consistent value of
the imaginary part of the cavity Green function is then realized during the iteration.

Tracking random samples as a function of the iteration index provides therefore information
about the character of the states at the energy for which the sample is constructed. Random
samples corresponding to extended states converge rapidly to its fixed point, whereas random
samples corresponding to localized states do not converge. Hence, extended and localized states
can be detected by the differences they give rise to in the mathematical properties of the recursion
relations.

Sometimes it is advantageous to keep η finite. But then it is necessary to monitor the flow of
the random samples, or of its associated average and typical values, as η gets smaller and smaller.
The part of the spectrum corresponding to extended states is insensitive to the η-scaling, after η
is small enough to see the correct LDOS nothing changes anymore. Localized states on the other
hand are strongly affected. In fact, it can be numerically verified, that the typical LDOS indeed
scales to zero with η → 0. [134, 140]

To investigate the localization properties of electron and polaron states, we specifically focused
on the typical LDOS, tracking this quantity, for given energy and model parameters, as a function
of η and the number of iterations. Introducing a rescaled transfer amplitude J = J̄/

√
K, we

measure energies in units of the bare bandwidth W0 = 4J̄ = 1 and define λ̄ = Ep/J̄ , ᾱ = Ω/J̄ ,
and γ̄ = γ/4J̄ . All calculations are carried out for the K = 2 Bethe lattice.

2.6.1 Electron States

To demonstrate the feasibility of the statDMFT and the associated localization criterion, we first
discuss the localization properties of a single electron without coupling to phonons. In the next
subsection, we will then contrast this well understood situation with the results for the coupled
electron-phonon system. Some of the results of this subsection are taken from Alvermann. [140]

We begin with a qualitative discussion of the distribution for the LDOS at ω = 0, shown in
Fig. 2.15 for γ̄ = 0.2, 0.5, 1.0, and 1.5 (inset). The shape of the distribution changes dramatically
with increasing disorder: For small disorder (γ̄ < 1), the distribution is approximately a Gaussian.
The most probable value and the average value almost coincide and change little with disorder
(see Table 2.2). Thus, the main effect of small disorder is to broaden the distribution. For
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Figure 2.15: Distribution for the LDOS at ω = 0 for γ̄ = 0.2, 0.5, and 1.0. The inset shows the distribution
for γ̄ = 1.5 on a logarithmic scale. In all cases η = 10−10.

Table 2.2: Average, most probable, and typical LDOS at ω = 0 corresponding to the distributions shown
in Fig. 2.15.

γ̄ Nave Nmpv N typ

0.2 0.844 0.843 0.841
0.5 0.822 0.749 0.773
1.0 0.710 0.162 0.445
1.5 0.568 0.006 0.106

larger disorder (γ̄ ≥ 1), on the other hand, the distribution develops a long tail, where the most
probable value is now significantly smaller than the average value (see again Table 2.2). For
even larger disorder, close to the localization transition (for instance, for γ̄ = 1.5 shown in the
inset of Fig. 2.15), the distribution becomes almost log-normal. [141] The average LDOS is now
completely meaningless. Obviously, disorder does not only broaden the distribution but induces,
if sufficiently strong, a change in the nature of the distribution.

From physical considerations, it is clear, that the distribution of the LDOS for a fixed energy
depends strongly on whether the states at that energy are extended or localized. The amplitude
of an extended state is uniformly distributed over the whole system. Thus, the LDOS does not
fluctuate much from site to site, i.e., the distribution of the LDOS at a given energy has to
be centered around an average LDOS. On the other hand, the amplitude of a localized state is
essentially zero everywhere, except in a small range around a central site. For a given energy
there is a certain number of degenerate localized states, each centered at a different site. The
LDOS fluctuates therefore strongly throughout the lattice. Accordingly, the distribution of the
LDOS, for a given energy, has to be very broad, with a long tail, due to the few sites where
localized states have a large weight. Naturally, a complete characterization of the LDOS has to
take the changes in the distribution into account, especially near the localization transition.

Within the statDMFT, distributions are represented by random samples. Any moment of the
distribution, as well as the most probable value can be obtained from the histogram associated
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Figure 2.16: The left panel shows the average (upper curve) and typical LDOS (lower curve) for γ̄ = 1.5
and η = 10−10. The vertical dotted lines indicate two energies, one below and one above the lower mobility
edge, for which in the right panel the evolution of the average and typical LDOS is shown as a function of
sample generation.

with the random sample. As indicated in subsection 2.5.4, in practice it is often better to avoid
the construction of the histogram and to characterize, instead, physical quantities by their typical
values, which are simply the geometric averages of the random samples. From Table 2.2 we see
that the typical values capture the characteristic asymmetry of the distribution in the localized
regime reasonably well (N typ � Nave for γ̄ > 1). It is therefore indeed meaningful to use the
typical LDOS as a kind of order parameter.

Let us now turn to a quantitative analysis of our results. In the left panel of Fig. 2.16 we depict,
for γ̄ = 1.5, the typical and average LDOS over the whole spectral range of the pure Anderson
model. The two main effects of disorder, the appearance of Lifshitz tails below ω = ±1.0 and the
existence of mobility edges around ω ∼ ±0.8, characterized by a vanishing of the typical LDOS
(recall subsection 2.5.4), can be clearly seen. The data have been obtained for η = 10−10, which is
sufficiently small to reveal the intrinsic spectrum and to allow for a first estimate of the mobility
edge.

A precise quantitative determination of the position of the mobility edge, requires a calculation
of the typical LDOS for η → 0. We specifically consider the lower mobility edge. With the obvious
modifications all statements also hold for the upper mobility edge.

To perform the η → 0 limit numerically, we initialize the sample with a finite LDOS and
then iterate the stochastic recursion relations for η = 0 until convergence. The iteration process
yields the correct, self-consistent LDOS. This procedure works extremely well, as can be seen
in the right panel of Fig. 2.16, where we plot the typical and average LDOS as a function of
the iteration step (in other words, the sample generation) for two energies, one below the lower
mobility edge (ω = −0.9) and one above (ω = 0). As expected, below the lower mobility edge, the
self-consistent value of the typical LDOS continues to decrease with sample generation, whereas
above the mobility edge, the typical LDOS remains finite. Note, in both cases, the average LDOS
stays finite and is essentially independent of the sample generation. This is the key observation,
below (above) the lower mobility edge, the typical LDOS vanishes (stays finite), whereas the
average LDOS remains finite in both cases.

At this point we should mention that the stable calculation of the average LDOS is subtle,
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Figure 2.17: The left and right panels show, respectively, the η-scaling of the distribution for the LDOS
below (ω = −0.9) and above (ω = 0) the lower mobility edge for γ̄ = 1.5. In the insets we display the
corresponding average and typical LDOS as a function of η.

because of the pure statistics associated with the long tail, which, on the other hand, determines
the average value. To overcome this problem, we calculated the average LDOS after each iteration
step and then performed an arithmetic average over the obtained values of the average LDOS.
Since the typical number of iterations NG ≈ 1000, we thereby effectively enlarged the sample
size by three orders of magnitude, which was sufficient to obtain smooth data for the average
LDOS. [140]

Thus, the tracking of the typical LDOS as a function of the sample generation can be uti-
lized to decide whether states for a given energy are localized or not. In practice one would
screen all energies comprising the spectrum and set a small threshold for the typical LDOS, for
instance 10−30, below which the typical LDOS is assumed to be de facto zero. According to our
localization criterion, states at that energy are then classified as localized. Since this procedure
can be performed arbitrarily close to the mobility edge, the position of the mobility edge can
be determined very precisely. It should be also mentioned that values for the typical LDOS of
the order of 10−200 are not numerical artifacts. The small values are correctly captured by the
floating point representation of the typical LDOS.

An alternative is to use finite values of η and to track the typical LDOS with decreasing η.
Below the lower mobility edge, the typical LDOS converges after a sufficient number of iterations
to a value whose scale is set by the chosen η value, whereas above the lower mobility edge, the
typical LDOS reaches an intrinsic value, completely unrelated to η. The average LDOS is in both
cases again finite. For this procedure to work, η has to be of course small enough to resolve the
intrinsic spectrum. For instance, η should not mimic Lifshitz tails.

That the procedure based on the η-dependence works excellently, can be verified in Fig. 2.17.
To clarify the origin of the differences in the η-scaling of the typical and average LDOS below and
above the lower mobility edge, we first look at the distributions. Below the lower mobility edge
at ω = −0.9, shown in left panel of Fig. 2.17, the distribution changes radically with decreasing
η (note the logarithmic scale). The maximum of the distribution, i.e. the most probable value,
shifts to very small values. In fact, η sets the scale for the most probable value. Accordingly, the
typical value shown in the inset, decreases with η. Note, however, the average value stays at a
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Figure 2.18: η-scaling of the typical and average (inset) LDOS at ω = 0 for γ̄ = 1.5. Note, for the chosen
η values, the average LDOS is independent of η.

constant value, independent of η. Clearly, the average value is determined by the long tail, i.e.,
the few sites, where the localized wave functions have appreciable weight. The average LDOS is
therefore extremely less probable and indeed not a representative value. In contrast, above the
lower mobility edge at ω = 0, shown in the right panel of Fig. 2.17, the distribution is essentially
independent of η. Accordingly, the typical as well as the average LDOS do not change with η.

Below the mobility edge, the distributions for the LDOS, the LCDOS, and the tunneling rate
Γloc(ω) become singular for η → 0. This behavior is closely connected with the configuration
averaged, spectrally resolved return probability3

fii(ω) = lim
η→0

(η/π)〈|Gii(ω + iη)|2〉{εi}, (2.92)

which is finite for localized states and zero for extended states. To reveal this relationship, we
follow Logan and Wolynes [136] and introduce a joint distribution for the real and imaginary
parts of the local hybridization function, P (R(ω),Γ(ω)), with R(ω) = ReH loc(ω) and Γ(ω) =
ImH loc(ω), in terms of which we obtain

fii(ω) = lim
η→0

∫ ∞

0
dΓ(ω)

D(ω,Γ(ω))

1 + η−1Γ(ω)
, (2.93)

D(ω,Γ(ω)) =
1

π

∫ ∞

−∞
dε

∫ ∞

−∞
dR(ω)

(η + Γ(ω))p(ε)P (R(ω),Γ(ω))

[ω − ε−R(ω)]2 + [η + Γ(ω)]2
. (2.94)

If the state at energy ω is localized, the (marginal) distribution for Γ(ω), i.e. P (Γ(ω)) =
∫∞
−∞ dR(ω)P (R(ω),Γ(ω)), is strongly peaked around Γmpv(ω) → 0 (cf. the left panel of Fig. 2.17).

In that regime, D(ω,Γ(ω)) ≈ δ(Γ(ω) − Γmpv(ω))N cav(ω), with N cav(ω) = −(1/π)ImG
(i)
jj (ω) de-

noting the LCDOS. [136] Accordingly, Eq. (2.93) reduces to

fii(ω) = lim
η→0

N cav(ω)

1 + η−1Γmpv(ω)
, (2.95)

3In Section 2.2 we defined the spectrally resolved return probability slightly differently as limη→0 2η〈|Gii(ω +
iη)|2〉{εi}.
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which, provided N cav(ω) 6= 0, is finite, because 1 + η−1Γmpv(ω) → 2 for η → 0. In other words,
the singular behavior of the distribution for Γloc(ω) gives rise to a pole in 〈|Gii(ω + iη)|2〉{εi}
which in turn makes fii(ω) finite. From diagrammatic approaches it is known that maximally
crossed diagrams, responsible for destructive interference, produce a pole in 〈|Gii(ω + iη)|2〉{εi}.
Equation (2.93) provides therefore a link between the interference-based description of Anderson
localization and the probabilistic approach adopted by the statDMFT.

The η-scaling discussed in Fig. 2.17 can be followed all the way down to η = 0, suggesting
a precise procedure for the determination of mobility edges. In practice, however, we cut off
the scaling at a certain threshold, for instance 10−30. If the typical LDOS for a given energy ω
is below the threshold, and if for that energy the average LDOS is finite, we classify the state
at energy ω as localized. For ω = 0 this is shown in Fig. 2.18. Clearly, for ω = 0 the typical
LDOS tends to zero for γ̄ ∼ 2.9. The average LDOS on the other hand is independent of η and
remains finite. Thus, according to our localization criterion, the state at energy ω = 0 is localized
for γ̄ ≥ 2.9, in accordance with results obtained by Girvin and Jonson [94] and by Miller and
Derrida. [134]

Performing the analysis for all energies comprising the spectrum, we can systematically map
out the mobility edge trajectory. The result is shown in Fig. 2.19. Note that the statDMFT
is accurate enough to detect the two transitions associated with the characteristic reentrance
behavior of the mobility edge trajectory near the band edge: The delocalization transition at
small disorder and the localization transition at large disorder. Even in the strongly disordered
regime, where the mobility edges move to the centre of the band and all states are localized, the
statDMFT works reliably well. We did not attempt to estimate the statistical error, but it should
be of the order of the fluctuations visible in the plot.

Our results are in excellent agreement with results obtained by Miller and Derrida [134],
suggesting that within the statDMFT mobility edges for noninteracting electrons can be indeed
determined. In the next subsection, we shall demonstrate, that the statDMFT is flexible and
powerful enough, to determine mobility edges in interacting systems as well.
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Figure 2.20: Evolution of the LDOS N(ω) (thick line) and the imaginary part of the interaction self-
energy ImΣ(ω) (thin line) for the pure Holstein model (γ̄ = 0) with increasing electron-phonon coupling
λ̄ = 0.4, 0.7, and 1.0 (from top to bottom). Results are given for ᾱ = 0.4 and W0 = 1.0.

2.6.2 Polaron States

We now turn our attention to the consequences of the electron-phonon coupling. If the electron-
phonon coupling is weak, the main effect is that the electron states above the phonon emission
threshold, i.e., states whose kinetic energy is at least the phonon energy Ω, acquire a finite lifetime
due to inelastic scattering, which gives rise to ImΣi(ω) 6= 0. As a result, the critical disorder
needed to localize these states will be larger than without electron-phonon coupling. For the
states below the phonon emission threshold, we have ImΣi(ω) = 0, and the critical disorder is
the same as for the respective states in the pure Anderson model. [5]

Increasing the electron-phonon coupling to the point where λ̄ > 1/
√
K and g2 > 1, polaron

formation starts and the LDOS fragments into an increasing number of polaronic subbands. [104,
113] Figure 2.20 illustrates, for the pure Holstein model (γ = 0), the evolution of the LDOS
with increasing electron-phonon coupling for fixed ᾱ and W0. The lowest subbands are either
completely or partly coherent, i.e. ImΣi(ω) = 0, whereas the higher order subbands are strongly
damped because ImΣi(ω) 6= 0. Thus, in the polaron regime, we have two energy scales: the bare
bandwidth and the much smaller width of the polaronic subbands. Obviously, the width of the
distribution of the on-site energies εi can be small on the scale of the bare bandwidth but large
on the scale of the subband. We distinguish therefore between two regimes: The Holstein regime,
where disorder is small on the scale of the bare bandwidth and the Anderson regime, where it is
large on the scale of the width of the subband.

Holstein regime

For our purpose the lowest polaronic subband is of particular interest, because it is always com-
pletely coherent, i.e. ImΣi(ω) = 0 throughout the subband, and no inelastic polaron-phonon
scattering interferes with the localization properties of the polaron (see Fig. 2.20). Numerical
studies of the ordered Holstein model demonstrated that the band dispersion of the lowest sub-
band depends on both λ̄ and ᾱ, and may differ significantly from the rescaled bare band. We
expect therefore pronouced differences in the localization behavior depending on whether the
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Figure 2.21: The left and right panels show, respectively, typical tunneling rates Γtyp(ω) in the adiabatic
intermediate-to-strong coupling (ᾱ = 0.4, λ̄ = 1.8) and anti-adiabatic strong coupling (ᾱ = 1.2 and
λ̄ = 6.66̄) regime, using W0 = 2.0 and η = 10−8. The insets display the subband LCDOS N(ω) and the
imaginary part of the interaction self-energy ImΣ(ω) for γ̄ = 0 (vertical dotted lines indicate the energies
ω for which Γtyp(ω) is plotted).

system is in the anti-adiabatic (small ᾱ) or adiabatic (large ᾱ) strong-coupling regime.

For a first orientation we present in Fig. 2.21 typical tunneling rates Γtyp(ω) as a function
of disorder strength γ̄ for the lowest polaronic subband in the adiabatic intermediate-to-strong
coupling (left panel) and non-to-anti-adiabatic strong coupling regime (right panel). [5] In the
insets the subband LCDOS are also shown. Note, the bare bandwidth used in Fig. 2.21 is W0 = 2.
The data were obtained for η = 10−8, which is not enough to quantitatively determine mobility
edges, but the qualitative localization behavior of the states, in particular the difference between
the adiabatic and anti-adiabatic regime, is already clearly revealed. In the adiabatic regime (left
panel), the LCDOS is rather asymmetric because of the “hybridization” with the (optical) phonon
branch, leading to a band flattening at the Brillouin-zone boundary (cf. Section 2.3). As a result,
states at the zone boundary are very susceptible to disorder and the critical disorder strength for
which Γtyp(ω) vanishes at the top of the subband is substantially smaller than at the bottom of
the subband. Clearly, in contrast to the Anderson model, there is a pronounced asymmetry of
the localization behavior of the states within the subband. Not surprisingly, the absolute scale
of disorder affecting the subband is on the order of the subband width W̄ , which is strongly
renormalized in comparison with the bare bandwidth W0. In the anti-adiabatic strong coupling
regime (right panel) the phonon admixture of the polaron states is nearly energy independent.
Concomitantly, long-range tunneling as well as band flattening are negligible and the LDOS is
rather symmetric (see inset). In fact, the dispersion of the subband is in that regime identical to
the rescaled bare dispersion. [83,99] Accordingly, we expect in the anti-adiabatic strong-coupling
regime disorder to affect the polaronic subband in the same way as it affects the band of the
pure Anderson model. Most notably, the mobility edges should simultaneously appear on both
sides of the subband. Furthermore, the mobility edge trajectories should show the characteristic
reentrance behavior at the band edges and the critical disorder needed to localize all states of
the subband should be determined by the states in the centre of the subband. In fact, with an
appropriate scaling, the mobility edge trajectories for the lowest polaronic subband and the pure
Anderson model should coincide. Below, we demonstrate that this is indeed the case.
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Figure 2.22: Average and typical LDOS for the lowest polaronic subband in the anti-adiabatic, strong
coupling regime for γ̄ = 2.5×W ; W = 3.45× 10−4 is the width of the lowest subband of the pure Holstein
model in units of W0 = 4J̄ = 1. The polaron parameters are ᾱ = 2.25 and λ̄ = 9. The vertical dotted
lines indicate two energies, one above (ω = −4.50725) and one below (ω = −4.50759) the upper mobility
edge for the subband.

As for electron states in the Anderson model, a quantitative analysis of the localization bavior
of polaron states in the Anderson-Holstein model requires a calculation of the typical LDOS for
η → 0. First, we consider in detail the anti-adiabatic strong coupling regime, where the phonon
admixture of the states comprising the lowest polaronic subband is almost energy independent,
and we in fact expect to recover the localization physics of a rescaled Anderson model.

We start with Fig. 2.22, which shows, for ᾱ = 2.25 and λ̄ = 9, the average and typical LDOS
for the lowest subband; γ̄ = 2.5 ×W with W = 3.45 × 10−4 the width of the subband in units
of W0 = 4J̄ . For comparison, we also show the DMFT result for the LDOS. As expected, the
average LDOS is rather symmetric, the small asymmetry reflecting the fact that we are not yet
in the extreme anti-adiabatic regime. As far as the effect of disorder is concerned, we see the
same overall features as in the pure Anderson model (cf. Fig. 2.16): the appearance of Lifshitz
tails and of mobility edges. The typical LDOS, shown in Fig. 2.22 for η = 10−8 and η = 10−14,
vanishes on the both sides of the subband, clearly indicating the existence of mobility edges on
both sides of the subband. As discussed before, a precise determination of the position of the
mobility edges requires either to calculate the typical LDOS for η = 0 and to track the iteration
flow with sample generation, or to follow the η-scaling of the LDOS.

For a quantitative calculation of the mobility edges, we adopted here the η-scaling approach.
In Fig. 2.23 we show, for the two representative energies indicated in Fig. 2.22, the η-scaling of the
distribution for the typical LDOS, the typical LDOS, and the average LDOS. Above the upper
mobility edge at ω = −4.50725, the distribution shows the characteristic properties associated
with localized states: An extremely small most probable value and a long tail resulting in an
average value much larger than the most probable value. The typical LDOS again scales to
the fixed η value, while the average LDOS is independent of η. For the extended states at
ω = −4.50759, on the other hand, we again see that the distribution is insensitive to η and both
average and typical LDOS converge to finite values independent of η.

As for the pure Anderson model, tracking the η-scaling of the LDOS for all energies comprising
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Figure 2.23: The left and right panels show, respectively, the η-scaling of the distribution for the LDOS
at the two energies indicated in Fig. 2.22. The polaron parameters are the same as in Fig. 2.22. In the left
panel ω = −4.50725 (above the upper mobility edge), while in the right panel ω = −4.50759 (below the
upper mobility edge). The insets show the corresponding average and typical LDOS as a function of η.

the subband, enables us to map out the mobility edge trajectory for the subband. From physical
considerations, we know that the trajectory should be the same as for the pure Anderson model.
Instead of calculating the whole mobility edge trajectory, it is therefore sufficient to verify, for
representative energies, that the two mobility edge trajectories indeed coincide.

As a first demonstration of this assertion, we plot in Fig. 2.24 the typical LDOS for ω =
−4.50759 (roughly the centre of the subband) scaled to its value at γ̄ = 0 as a function of
disorder in units of the width of the subband and compare it with the scaled typical LDOS at
ω = 0 for the pure Anderson model, again as a function of γ̄ scaled to the bandwidth. As
anticipated, the two plots coincide. As in the pure Anderson model, the state at the centre of
the (sub)band is localized for γ̄/W ≥ 2.9.

To provide further evidence for our assertion that the localization properties of the lowest
subband in the anti-adiabatic strong coupling regime are the ones of a rescaled Anderson model,
we explicitly calculated for a few selected energies the critical disorder needed to localize the states
at these energies and, thereby, constructed parts of the mobility edge trajectory for the lowest
subband. Note the extremely high precision of our approach, which enables us to determine the
mobility edge trajectory of a subband whose width without disorder is 3.45 × 10−4 in units of
W0 = 4J̄ = 1. The results are shown in Fig. 2.25 (cf. circles). Obviously, the data points for the
subband follow exactly the trajectory of the pure Anderson model, even at very strong disorder,
where all states of the subband are localized (see data point at γ̄/W ∼ 2.9). In the anti-adiabatic
strong coupling regime, the localization behavior of the states of the lowest subband is therefore
identical to the behavior of the states in a rescaled Anderson model. The polaron effect, in
particular the band collapse, only changes the energy scale on which localization takes place, the
internal structure of the polaron states does not affect the localization properties. Thus, in the
anti-adiabatic strong coupling regime, disorder can be sufficiently strong to localize all states of
the lowest subband and yet too small to interfere with the internal structure of the polaron.

This is not the case in the adiabatic intermediate-to-strong coupling regime, where we find
substantial differences between the localization properties of the lowest polaronic subband and
the band of the pure Anderson model. The differences originate in the changing composite
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Figure 2.24: The typical LDOS at ω = −4.50759 (roughly the centre of the subband) scaled to its value
for γ̄ = 0 as a function of disorder measured in units of the width of the subband W ; ᾱ = 2.25 and λ̄ = 9.
For comparison, we also plot the scaled typical LDOS for the pure Anderson model as a function of scaled
disorder.

structure of the polaron states within the lowest subband. In particular at the top of the subband,
where the band flattening due to the hybridization with the optical phonon branch significantly
modifies the LDOS, the localization properties deviate strongly from a rescaled pure Anderson
model. But also at the bottom of the subband significant deviations can be observed because of
the phonon-induced long-range tunneling processes.

In the upper panel of Fig. 2.26 we show, for ᾱ = 0.2, λ̄ = 1, and γ̄ = 0.25 ×W , the average
and typical LDOS for the lowest subband. Here, W = 8.123 × 10−3 is the width of the subband
for the pure Holstein model (in units of W0 = 4J̄ = 1). In contrast to the anti-adiabatic strong
coupling case, the LDOS is strongly asymmetric, a direct result of the band flattening which yields
a steeple at the top of the LDOS. States in the steeple, belonging to the flat part of the dispersion,
are already sluggish and therefore very susceptible to disorder (recall the discussion of the DCPA
delocalization time in Section 2.3). The typical LDOS vanishes therefore rapidly at the top of
the subband. At the bottom, however, where states are rather mobile due to phonon-induced
long-range tunneling, and hence less affected by disorder, the typical LDOS is finite.

To determine the position of the mobility edges we again employ the η-scaling approach. In
Fig. 2.25 we show for ᾱ = 0.2 and λ̄ = 1 parts of the mobility edge trajectory for the lowest
subband in the adiabatic strong coupling regime (cf. diamonds). As expected, the states at the
bottom of the subband are almost insensitive to small amounts of disorder, resulting in a lower
mobility edge which is pinned at the lower band edge, which in fact does also not change. States
at the top of the subband, in contrast, are immediately affected by disorder. Small amounts of
disorder (small even on the scale of the subband) are sufficient to shift the upper band edge to
higher energies and to localize the states at the top of the subband. The upper mobility edge
moves very fast away from the upper band edge. As a result, the mobility edge trajectory for the
lowest subband in the adiabatic strong coupling regime is very asymmetric (for small disorder).

For large disorder (not shown in Fig. 2.25), of the order of the width of the subband, the upper
band edge of the disorder-broadened lowest subband moves into a spectral range with significant
inelastic scattering. The reason is the following: Without disorder, subbands are separated
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Figure 2.25: Parts of the mobility edge trajectories for the lowest polaronic subband of the Anderson-
Holstein model in the anti-adiabatic strong coupling (ᾱ = 2.25 and λ̄ = 9, ◦) and the adiabatic
intermediate-to-strong coupling regime (ᾱ = 0.2 and λ̄ = 1, �). Disorder is measured in units of the
respective width of the subbands, which, for the plot, are scaled to W0 = 4J̄ = 1. For comparison the
mobility edge trajectory for the pure Anderson model is also given (dashed line).

by singularities in the imaginary part of the electron-phonon self-energy. Increasing disorder
redistributes states. In particular, it moves states into the gap region, which separated the first
from the second subband, thereby giving rise to a shrinking gap. Concomitantly, the singularity
in the electron-phonon self-energy broadens, its state repelling character weakens, resulting in an
enhanced inelastic scattering rate for the states at the top of the lowest subband, which strongly
suppresses localization in this spectral range. Both effects, the merging of the subbands and the
increased inelastic scattering, occur before a reentrance behavior of the mobility edge trajectories
can be observed.

To support the scenario just described we depict in the three lower panels of Fig. 2.26, for
polaron parameters ᾱ = 0.2 and λ̄ = 1, the typical and average LDOS for γ̄ = 1×W , 2×W , and
3×W . Again, W = 8.123×10−3 is the width of the subband for the pure Holstein model (in units
of W0 = 4J̄ = 1). In all three panels, all states of the lowest subband are now delocalized, the
typical LDOS is finite for all energies comprising the lowest subband. For the upper panel, where
a small gap still separates the two lowest subbands, the asymmetric localization behavior of the
states at the bottom and the top of the lowest subband is still visible. Nevertheless, inelastic
scattering is so strong as to make the typical LDOS finite even at the top of the subband. With
increasing disorder, shown in the three lower panels, the gap vanishes. More importantly, however,
the typical LDOS increases with increasing disorder. Thus, in this regime, disorder delocalizes
states. Eventually, of course, with disorder on the scale of the bare bandwidth, all states would be
localized. However, the critical disorder strength is larger than in the case of the pure Anderson
model, because the inelastic scattering has to be overcome.

The merging of the subbands signals that the internal structure of the polaron states and
disorder start to strongly interfere with each other. With the vanishing subband structure, the
concept of a subband mobility edge trajectory breaks down and a reentrance behavior of the
mobility edge trajectory cannot be established.
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Figure 2.26: Average (crosses) and typical (stars) LDOS for ᾱ = 0.2, λ̄ = 1 and four different values for
the disorder strength: γ̄ = 0.25 ×W , γ̄ = 1 ×W , γ̄ = 2 ×W , and γ̄ = 3 ×W (from top to bottom),
with W = 8.123 × 10−3 the width of the lowest polaron subband of the pure Holstein model (in units
W0 = 4J̄ = 1). The solid line is the DMFT result for the LCDOS.

Anderson regime

The vanishing subband structure characterizes a transition regime, between the Holstein and the
Anderson regime, where disorder is on the scale of the energy gap between the subbands. The
localization properties in the transition region are rather complicated. The situation becomes
more transparent in what we call the Anderson regime, where disorder is large compared to the
width of the polaronic subbands.

In Fig. 2.27 we show the typical and average LDOS for ᾱ = 0.2, λ̄ = 0.75, and γ̄ = 2. Without
electron-phonon coupling, there would be mobility edges at ω ≈ ±0.9. In the presence of electron-
phonon coupling, we first note that the symmetry between the lower and upper mobility edges is
broken. The lower mobility edge seems to be located at ω ≈ −0.8, which is above the mobility
edge of the noninteracting system. (Here, we did not perform the η-scaling necessary for a precise
determination of the mobility edge.) Thus, at the low energy edge, electron-phonon coupling
enhances the tendency towards localization. The upper mobility edge, in contrast, is shifted to
higher energies (ω ≈ 1.2), i.e., at the upper band edge electron-phonon coupling delocalizes states
and works against localization. If we mapped out a mobility edge trajectory, we would find a
pronounced asymmetry between the lower and the upper part of the trajectory.

The asymmetry can be explained, if we recall that our calculation is for T = 0. Therefore,
states at energy ω can, due to electron-phonon interaction, only couple to states at energies less
than ω. This leads at the high energy side of the LDOS to a phonon-induced coupling of localized
states above the mobility edge of the noninteracting system to delocalized states below. As a
consequence, the localized states become delocalized. On the low energy side, the situation is
different. States below the lower mobility edge of the noninteracting system remain localized,
because they can only couple to states which are already localized. Above the lower mobility
edge of the noninteracting system, electron-phonon interaction attempts however to transform
electronic band states into polaronic (sub)band states, as suggested by Anderson. [93] Hence, these
states become heavier and more susceptible to disorder. As a consequence, the lower mobility
edge of the interacting system shifts above the lower mobility edge of the noninteracting one.



84 Polaron Formation and Disorder [4–7]

-3 -2 -1 0 1 2
ω

0

0.1

0.2

0.3

0.4

0.5

0.6

N
ty

p
, 

N
a
v
e

DMFA
N

ave

N
typ

N
ave

, N
typ

 (λ
_

=0.0)

-1.4 -1.2 -1 -0.8ω
0

0.2

0.4

Figure 2.27: Average (crosses) and typical LDOS (stars) in the Anderson regime for ᾱ = 0.2, λ̄ = 0.75,
and γ̄ = 2. The solid line is the LCDOS obtained from DMFT (a blow-up of the low-energy part is shown
in the inset). Dashed lines depict the average and typical LDOS for λ̄ = 0, respectively, and the vertical
dotted lines indicate the mobility edges of the noninteracting system.

Further insight about the nature of the states can be gained from the LCDOS obtained within
the DMFT (cf. solid line in Fig. 2.27 and inset). Due to electron-phonon coupling, the DMFT
results for the LCDOS show at the low energy side pronounced plateaus with a width given by the
phonon energy. (The spikes are numerical artifacts.) The step-like increase of the DMFT LCDOS,
together with the vanishing of the typical LDOS, is a clear signature for localized polaron states.
The character of the states is here revealed by the DMFT LCDOS: It arises from polaronic defects
[cf. independent boson model], which are centered around different on-site energies, because of
the disorder. Since they are decoupled, the DMFT LCDOS (with a higher resolution we would
see the same in the average LDOS) does not change with energy as long as the fluctuations of the
on-site energies are smaller than the phonon energy. If the difference in on-site energy is equal to
the phonon energy, a step arises because states with one additional phonon contribute. The step
heights reflect therefore the phonon distribution of the polaronic defect states.

Whereas in the adiabatic intermediate-to-strong coupling regime disorder affects states differ-
ently at the bottom and the top of the polaronic subband, in the Anderson regime, electron-phonon

coupling affects states in the vicinity of the lower and upper mobility edges of the noninteracting
system differently. Only in the vicinity of the lower mobility edge of the noninteracting system,
electron-phonon coupling and localization work in the same direction. At the upper mobility
edge, electron-phonon coupling in fact delocalizes states.

2.7 Concluding Remarks

In the second half of this chapter we presented a detailed description of the statDMFT and
applied it to the Anderson-Holstein model. Our main goal was to develop a self-consistent theory
of localization in a generic disordered electron-phonon system. In particular, we investigated the
localization properties of a single electron over a wide range of polaron parameters (adiabaticity
and electron-phonon coupling strength).

Our approach is non-perturbative in the electron-phonon coupling and accounts for the spa-
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tial fluctuations of the environment by promoting all variables of the theory to random vari-
ables. The objective of the theory is to calculate distributions (random samples). Of particu-
lar importance are the distributions for the LDOS, LCDOS, and the tunneling rate. Whereas
information about the spatial dependence of the wave function Ψi can be extracted from the
distribution for the LDOS, i.e. Ψi ↔ P (Ni), the configuration averaged, spectrally resolved re-
turn probability is closely related to the distributions for the LCDOS and the tunneling rate, i.e.

fii ↔ P (N
(j)
i ), P (Γi) [cf. Eq. 2.93].

We focused on the distribution for the LDOS. Since it is a measure of the spatial distribution
of the wave function, it contains direct information about the localization properties: States are
localized if the distribution of the LDOS is very asymmetric with an extremely long tail. Although
the tail, which is due to the few sites on which (localized) wave functions are finite, makes the
average LDOS finite, the more representative typical LDOS vanishes. Delocalized states, on the
other hand, are characterized by a symmetric distribution of the LDOS for which the typical and
average LDOS are of the same order of magnitude.

Using the typical LDOS to distinguish localized from extended states, we investigated in detail
the localization properties of a single electron in the Anderson-Holstein model. We distinguished
two parameter regimes: (i) weakly disordered Holstein regime, where disorder is small on the
scale of the bare bandwidth and the polaronic subband structure is well developed, and (ii) the
strongly disordered Anderson regime, with disorder large on the scale of the width of the subband,
strong enough to interfere with the internal structure of the polaron states.

In the weakly disordered Holstein regime, we focused on a comparison of the mobility edge
trajectories for the lowest polaronic subband and the bare band of the Anderson model. We found
significant deviations, most notably in the adiabatic, intermediate-to-strong coupling regime.
Two main conclusions can be drawn from our studies: (i) In the strong coupling, anti-adiabatic
regime, the internal structure of the polaron is irrelevant and the localization properties of the
lowest polaronic subband are essentially the ones of a rescaled Anderson model. The overall scale
of the disorder is of course much smaller in the polaron case, suggesting that small polarons are
most probably always localized at T = 0. (ii) The internal structure of the phonon dressing
contributes the most in the adiabatic intermediate-to-strong coupling regime. Initially, for small
disorder γ̄ < W (W the width of the lowest subband in the clean system), states at the high-
energy edge of the lowest polaronic subband are extremely sensitive to disorder and rather easy
to localize, whereas states at the bottom are almost insensitive to disorder. In contrast to the
pure Anderson model, the mobility edge trajectory (in the disorder range where it can be defined)
is not symmetric with respect to the band centre. Whereas the lower mobility edge is pinned
to the lower band edge, the upper mobility edge moves quickly away from the upper band edge.
A reentrance of the upper mobility edge towards the centre of the subband cannot be observed,
because at larger disorder strength subbands vanish and the concept of a subband mobility edge
trajectory obviously breaks down.

The merging of polaron subbands is characteristic for a complicated transition regime where
disorder is of the order of the energy gap and strongly interferes with the internal structure of
the polaron states. In the Anderson regime, where disorder is much larger than the width of the
subbands, disorder and electron-phonon coupling work in the same direction at the bottom of
the band, where electron-phonon coupling even enhances the tendency towards localization, and
against each other at the top, where electron-phonon coupling delocalizes states above the upper
mobility edge of the noninteracting system. The mobility edge trajectory acquires therefore in
the Anderson regime a pronounced asymmetry.

Several issues must be however clarified before real materials with polaronic excitations can
be analysed along the lines presented in this paper. In most polaronic materials electron densities
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are finite. The most pressing issue is therefore the consideration of the polaron-polaron interac-
tion, mediated either due to phonons or due to the Coulomb potential of the electron charge. In
principle, the statDMFT is capable of tackling this challenging problem. The main obstacle here
is the controlled calculation of the interaction self-energy for the ensemble of impurity models.
The exact continued fraction expansion works only for a single electron and cannot be adopted
to finite densities. For finite densities, the interaction self-energy could be calculated perturba-
tively. However, self-trapping is a non-perturbative effect. To overcome the limitations of naive
perturbation theory, it is at least necessary to adopt, for a given realization of disorder, a fully
vertex-renormalized skeleton expansion. Formally, as long as the electron-phonon coupling is lin-
ear, the coupled electron-phonon system can be always mapped on to a purely electronic system
with a retarded interaction. The parquet approach4, for instance, could be then used to set up
such an expansion. It is also conceivable to use direct numerical simulations of the ensemble of
the local Green function, based, for instance, on Quantum-Monte-Carlo or Exact Diagonalization
techniques. The localization properties per se can again be simply extracted from an analysis of
the distribution for the LDOS.

4A detailed description of the parquet approach is given in Section 1.5.



Appendix A

Polaron Impurity Model

In this appendix, we show how the local DCPA two-point function Gii(z) [cp. Eq. (2.31)] can be
calculated from the polaron impurity model (PIM). Towards that end, we apply the operation
< i|(N,ni|...|mi, N)|i > on both sides of Eq. (2.28) and obtain in compact matrix notation

D(N)(z; εi) = G̃(N)(z) + G̃(N)(z)
[

σ
(N)
imp(z; εi) + σ

(N)
ph (

√

EpΩ)
]

D(N)(z; εi), (A.1)

with matrices

D(N)
nm (z; εi) = < i|(0, ni|D(N)

i (z)|mi, 0)|i >, (A.2)
[

σ
(N)
imp(z; εi)

]

nm
=
[

εi − v(N+n)(z)
]

δn,m, (A.3)
[

σ
(N)
ph (

√

EpΩ)
]

nm
= −

√

EpΩ
√
n+ 1δm,n+1 −

√

EpΩ
√
nδm,n−1, (A.4)

[

G̃(N)(z)
]

nm
= G(N+n)

ii (z)δn,m. (A.5)

To derive Eq. (A.1) we employed ∆Hi(z) ∼ |i >< i| together with G(q)
ii (z) =< i|g(q)(z)|i >,

which follows from the definition of Ḡ(z).

If we now introduce an auxiliary matrix

H̃(N)(z) =
[

1 − G̃(N)(z)σ
(N)
ph (

√

EpΩ)
]−1

G̃(N)(z), (A.6)

which sums all electron-phonon scattering processes, Eq. (A.1) can be rearranged into

D(N)(z; εi) =
[

1 − H̃(N)(z)σ
(N)
imp(z; εi)

]−1
H̃(N)(z). (A.7)

The configuration average of Eq. (A.7) is straightforwardly performed since randomness enters

only through σ
(N)
imp(z; εi). As a result, 〈〈...〉〉 reduces to a site average over εi, 〈〈...〉〉εi

, and we find,

〈〈D(N)(z)〉〉 = 〈〈D(N)(z)〉〉εi
=

∫

dεip(εi)D(N)(z; εi) (A.8)

or, explicitly in terms of matrix elements,

〈〈D(N)
nm (z)〉〉 = 〈〈D(N)

nm (z)〉〉εi
=

∫

dεip(εi)D(N)
nm (z; εi), (A.9)

where the amplitudes D(N)
nm (z; εi) satisfy a recursion relation

D(N)
nm (z; εi) = F (N+n)(z; εi)δn,m −

√

EpΩF
(N+n)(z; εi)

×
[√
n+ 1D(N)

n+1m(z; εi) +
√
nD(N)

n−1m(z; εi)
]

, (A.10)

with

F (n)(z; εi) =
1

z − nΩ − εi + G−1
ii (z − nΩ) −R[Gii(z − nΩ)]

. (A.11)
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The recursion relation (A.10) can be solved by standard techniques [142], which give for the

amplitude D(0)
00 (z; εi) a continued fraction:

D(0)
00 (z; εi) =

1

[F (0)(z; εi)]
−1 − ΩEp

[F (1)(z; εi)]
−1 − 2ΩEp

[F (2)(z; εi)]
−1 − 3ΩEp

...

. (A.12)

From the self-consistency condition, Eq. (2.30), finally follows

Gii(z) = 〈〈D(0)
00 (z)〉〉 = 〈〈D(0)

00 (z)〉〉εi
=

∫

dεip(εi)D(0)
00 (z; εi), (A.13)

which directly yields Eq. (2.31).

At the end of this appendix, we bring the four-point function f(ω− iη, ω+ iη) [cp. Eq. (2.54)]
into the numerically more convenient form of Eq. (2.55). As a preparatory step we notice, using

the definition of the PIM, Eq. (2.27), together with G (q)
ii (z) =< i|g(q)(z)|i >, that the matrix

elements of the atomic T-matrix defined in Eq. (2.37) can be written as

t
(0)
0q (z; εi) =

D(0)
0q (z; εi) − δ0qGii(z)

Gii(z)G(q)
ii (z)

, (A.14)

with D(0)
0q (z; εi) defined in Eq. (A.2). If we now insert Eq. (A.14) into Eq. (2.54) and take into

account that 〈〈D(0)
00 (z; εi)〉〉 = Gii(z), Eq. (2.54) reduces to

f(z1, z2) =
∞
∑

q=0

〈〈D(0)
0q (z1; εi)D(0)

q0 (z2; εi)〉〉. (A.15)

For z1 = z∗2 = z∗, we may use v(0)(z) = [v(0)(z∗)]∗ and slightly rearrange the above equation into

f(z∗, z) =
∞
∑

q=0

〈〈|D(0)
q0 (z; εi)|2〉〉 =

∫

dεi p(εi)|D(0)
q0 (z; εi)|2, (A.16)

where we again used the fact that the configuration average reduces to a site average over εi. The

amplitudes D(0)
q0 (z; εi) satisfy the recursion relations (A.10). Setting z = ω + iη we finally obtain

Eq. (2.55).



Appendix B

DCPA Ward Identity

Here we demonstrate that the (ladder) approximation employed to calculate the averaged two-
resolvent is consistent with the single-site self-consistency condition used to obtain the averaged

one-resolvent. In particular, we prove that for Oe = 1e the vertex operator Γ
(0)
i (z1, Oe, z2) and

the self-energy operator Σ
(0)
i (z) fulfill a Ward identity, which corresponds to particle conserva-

tion. [102]
For the proof it is appropriate to work with vertex and self-energy operators instead of func-

tions. We start with Eq.(2.39) written for Oe = 1e,

Kave(z1, 1e, z2) = g(0)(z1){1e +
∑

i

Γ
(0)
i (z1, 1e, z2)}g(0)(z2), (B.1)

where we used Γave =
∑

i Γ
(0)
i .

Alternatively, employing the resolvent identity G(z2) − G(z1) = (z1 − z2)G(z1)G(z2) in the
definition of the averaged two-resolvent, Eq. (2.8), we obtain an equivalent expression

Kave(z1, 1e, z2) = (z1 − z2){g(0)(z2) − g(0)(z1)}. (B.2)

Combining now Eq. (B.1) with (B.2) and using the definition of g(q)(z), Eq. (2.16), together

with the definition of Σ
(q)
i (z) in Eq. (2.14), we find that the local self-energy operator and the

local vertex operator must satisfy the Ward identity

Γ
(0)
i (z1, 1e, z2) = −(z1 − z2)

−1{Σ(0)
i (z1) − Σ

(0)
i (z2)}. (B.3)

We have to show that Γ
(0)
i (z1, 1e, z2) defined in Eq. (2.44), and Σ

(0)
i (z) defined in Eq. (2.14),

satisfy Eq. (B.3). The proof consists of two main steps. First, we rewrite Eq. (2.45) for Oe = 1e

in operator form

Γ
(0)
i (z1, 1e, z2) =

∑

q

〈〈(0, 0i|ti(z1)|qi, 0)g(q)(z1)

× {1e −
∑

j 6=i

Γ
(q)
j (z1, 1e, z2)}g(q)(z2)(0, qi|ti(z2)|0i, 0)〉〉. (B.4)

In a second step we insert Eq. (B.3), written for zi → zi − qΩ, i = 1, 2, into the rhs of Eq. (B.4)
and recover after a lengthy but straightforward calculation an identity.

It is in order to provide a few calculational details. Instead of using Eq. (2.22) for the atomic
T-matrix, it is convenient to recast Eq. (2.22) into two equivalent integral equations

ti(z) = ∆Hi(z)
[

1 + Ḡ(z)ti(z)
]

=
[

1 + ti(z)Ḡ(z)
]

∆Hi(z), (B.5)

and to deduce two useful identities

ti(z)Ḡ(z)Ui = ti(z) − Ui +
∑

q

PqΣ
(q)
i (z) + ti(z)Ḡ(z)

∑

q

PqΣ
(q)
i (z), (B.6)

UiḠ(z)ti(z) = ti(z) − Ui +
∑

q

PqΣ
(q)
i (z) +

∑

q

PqΣ
(q)
i (z)Ḡ(z)ti(z), (B.7)

with Ui = {εi −
√

EpΩ(bi + b†i}|i >< i|. Eqs. (B.6) and (B.7) are employed at various stages of
the calculation together with Eq. (2.17) and the single-site self-consistency condition Eq. (2.26).
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Second, since the atomic T-matrix ti(z) keeps phonons on sites j 6= i frozen, (0, 0i|ti(z)Q = 0 for
any projection operator Q projecting onto a subspace with at least one phonon on a site j 6= i.
Keeping these comments in mind, it is possible to derive the following intermediate result

Γ
(0)
i (z1, 1e, z2) = −(z1 − z2)

−1〈〈(0, 0i|ti(z1)Ḡ(z1)Ui − UiḠ(z2)ti(z2)|0i, 0)〉〉, (B.8)

which, using Eqs. (B.6) and (B.7), reduces to

Γ
(0)
i (z1, 1e, z2) = −(z1 − z2)

−1
[

Σ
(0)
i (z1) − Σ

(0)
i (z1)

]

. (B.9)



Appendix C

Ω = 0 Limit of the DCPA Equations

In the limit Ω → 0 and EpΩ = const, electron-phonon coupling produces for the electron only
an additional source of site-diagonal quenched disorder, on top of the site-diagonal alloy-type
disorder due to εi. In this appendix we show, that in that case the DCPA formalism reduces to
the CPA formalism. Thereby, we provide additional support for the consistency of the single-site
decoupling scheme.

For Ω → 0 and EpΩ = const, we first notice, that the upper indices of all quantities appearing
in the DCPA formalism can be set to zero [recall, e.g., v(q)(z) = v(0)(z − qΩ) and similarly for
all the other quantities]. In particular, Eq. (2.32) becomes q−independent. As a result, the
continued fraction in Eq. (2.31) can be summed analytically. Indeed, setting g =

√

EpΩ and
taking advantage of the continued fraction expansion of the error function [150],

1√
π

∫ ∞

−∞
dt
e−t2

z − t
=

1

1 − 1 · 1
2

1 − 2 · 1
2

1 − 3 · 1
2

...

, (C.1)

we find

Gii(ω) =

∫

dεi

∫ ∞

−∞
dt

e
− t2

2g2

√
2πg

p(εi)

ω + iη − εi + Gii(ω) −R[Gii(ω)] − t
, (C.2)

which is nothing but the CPA result for Gii(ω) in a model with site-diagonal Gaussian disorder
(→ t) on top of site-diagonal alloy-type disorder (→ εi).

Now we show that we also obtain the standard result for the Fourier transformation of the
local matrix element of the averaged two-resolvent. With Ω → 0 and EpΩ = const, Eq. (2.51)
yields for the vertex function

γ
(0)
~Q

=
∑

q

〈〈t(0)0q t
(0)
q0 〉〉a

(0)
~Q

+
∑

q

〈〈t(0)0q t
(0)
q0 〉〉{A

(0)
~Q

− G(0)
ii G(0)

ii }γ(0)
~Q
, (C.3)

which we slightly rearrange to

γ
(0)
~Q

=
Λa

(0)
~Q

1 − Λ{A(0)
~Q

− G(0)
ii G(0)

ii }
, (C.4)

with

Λ =
∑

q

〈〈t(0)0q t
(0)
q0 〉〉. (C.5)

Note, the average over the site-diagonal Gaussian disorder is given in Eq. (C.5) by the sum over
q; this corresponds to an augmented space representation of the Gaussian disorder field. [151]
Finally, employing Eq. (2.46) we find

K
(0)
~Q

= a
(0)
~Q

+ A(0)
~Q
γ

(0)
~Q

=
a

(0)
~Q

1 −LA(0)
~Q

, (C.6)
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with

L =
Λ

1 + ΛG(0)
ii G(0)

ii

, (C.7)

which is precisely the CPA result for
∑

i e
−i ~Q·~Ri < i|Kave|i >. [102]



Appendix D

StatDMFT for a Single Polaron: Multiple Scattering Approach

For a single electron at zero temperature, the statDMFT can be alternatively derived by suitably
modified multiple-scattering techniques. Although this derivation is not as general as the cavity
construction, it has the benefit to clarify the relationship between the statDMFT on the one hand
and the (dynamical) coherent potential approximation [(D)CPA] [103, 104] on the other.

The derivation, applicable to any model with local electron-phonon coupling and local disor-
der, proceeds in two steps: First, for a fixed realization of disorder, multiple-scattering techniques
are used to find the best single-site decoupling for the inelastic electron-phonon scattering. Techni-
cally, this results in the construction of an effective electron Hamiltonian from which all two-point
functions can be obtained. In a second step, to capture the spatial fluctuations due to disorder,
the local two-point function is expanded up to the second order term of the renormalized per-
turbation series. On a Bethe lattice, this step leads directly to the stochastic recursion relations
given in the the main text. For Bravais lattices Eq. (2.76) should be additionally invoked to
obtain a closed set of equations.

In the spirit of the multiple-scattering formalism introduced in Section 2.2, we define, in the
Wannier representation, an effective Hamiltonian

H̄(z) =
∑

i

εi|i〉〈i| −
∑

i,j

Jij |i〉〈j| +
∑

q

qΩPq + Σ(z), (D.1)

with an interaction self-energy operator

Σ(z) =
∑

i

∑

q

Pqvi(z − qΩ)|i〉〈i|. (D.2)

Here, we again introduced projection operators Pq [109], which project onto the phonon subspace
with a total number of q phonons in terms of which, neglecting the zero-point motion, the lattice
energy Ω

∑

i b
†
i bi =

∑

q qΩPq. The function vi(z) is the coherent potential, which is now site-
dependent in contrast to the DCPA ansatz (2.14).

Because we now treat only inelastic electron-phonon scattering within an effective single-site
approximation, the effective Hamiltonian (D.1) contains the term with the random on-site en-
ergies. This is in stark contrast to the effective Hamiltonian introduced in connection with the
DCPA. The DCPA treats both the average over phonons and the average over random on-site en-
ergies within an effective single-site approximation. As a result, the DCPA effective Hamiltonian
(2.11) does not contain the random on-site energies. The effective Hamiltonian (D.1) enables us
to perform, for a fixed realization of on-site energies, the phonon average in a “DCPA manner”.

By construction, the interaction self-energy is local and independent of the spatial distribution
of the phonons. It only depends on the electron energy z − qΩ, i.e. the total energy z minus the
energy of the lattice qΩ. Due to the randomness of the on-site energies, the self-energy is different
for each lattice site. In contrast to a CPA treatment of the disorder, we explicitly keep therefore
the site index i. It is only the spatial information due electron-phonon coupling which is lost in
the particular ansatz Eq. (D.2); disorder induced fluctuations are kept and manifest themselves
in the site dependence of the coherent potential vi(z).

For a fixed realization of on-site energies, the self-energy is determined by forcing the phonon
vacuum averages of the full resolvent G(z) = 1/(z − H) and the effective resolvent Ḡ(z) =
1/(z − H̄(z)) to be equal

(0|G(z)|0) = (0|Ḡ(z)|0). (D.3)
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The phonon vacuum averaged resolvents are still operators in the electronic Hilbert space and all
two-point functions can be obtained from (0|Ḡ(z)|0). (Note, for a single electron it is sufficient
to work with resolvent operators. Time-ordered Green functions are not required.)

We now rewrite the Anderson-Holstein model in terms of the effective Hamiltonian

H = H̄(z) +
∑

i

∆Hi(z), (D.4)

with

∆Hi(z) = −
√

EpΩ(bi + b†i )|i〉〈i| −
∑

q

Pqvi(z − qΩ)|i〉〈i|, (D.5)

and define a total T-matrix

G(z) = Ḡ(z) + Ḡ(z)T (z)Ḡ(z), (D.6)

connecting the full and the effective resolvents. The total T-matrix is a sum of single-site contri-
butions

T (z) =
∑

i

Qi(z), (D.7)

with

Qi(z) = ti(z)



1 + Ḡ(z)
∑

j 6=i

Qj(z)



 , (D.8)

and the single-site T-matrix

ti(z) =
[

1 − ∆Hi(z)Ḡ(z)
]−1

∆Hi(z). (D.9)

Using

Ḡ(z) =
∑

q



z − qΩ −
∑

i

[εi + vi(z − qΩ)]|i〉〈i| −
∑

ij

(−J)ij |i〉〈j|




−1

, (D.10)

which follows from the fact that H̄(z) does not couple phonon subspaces with different numbers
of phonons, the self-consistency equation Eq. (D.3) first reduces to (0|Qi(z)|0) = 0 and then,
within a single-site (D)CPA-type decoupling [4], eventually to

(0|ti(z)|0) = 0. (D.11)

Of course, the single-site T-matrix ti(z) affects only phonons on site i, phonons on other sites are
frozen and act only as spectators.

In Section 2.2 we have shown that the single-site self-consistency equation (0|ti(z)|0) = 0
is equivalent to allowing only self-avoiding paths in the iterated form of (0|Qi(z)|0) = 0. In
the limit of infinite coordination number, the single-site decoupling is exact. The single-site
decoupling treats electron-phonon scattering therefore as if the lattice had infinite coordination
number. Accordingly, the (D)CPA-type decoupling corresponds, within the framework of the
multiple-scattering formalism, to the truncation of the generating functional W (i)[η†, η] in Eq.
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(2.68). Both give rise to an effective single-site model where the only interaction is the original
local interaction of the lattice model.

Instead of working directly with the atomic T-matrix, it is advantageous to consider an en-
semble of polaron impurity models specified by

Di(z) = Ḡ(z) + Ḡ(z)ti(z)Ḡ(z), (D.12)

in terms of which the self-consistency equation becomes

(0|Di(z)|0) = (0|Ḡ(z)|0) = (0|G(z)|0), (D.13)

i.e. the electron operator (0|G(z)|0) is approximated by (0|Di(z)|0).
Note, due to the randomness of the on-site energies εi, the resolvents and its matrix elements

(the two-point functions) are random variables. Hence, Eq. (D.13) is a relation between random
variables. The site index on the lhs is not an inconsistency but merely indicates that the random
variable (0|Di(z)|0) has the same distribution as the random variables displayed on the rhs. It
is absolutely crucial to realize that the electronic operator (0|G(z)|0) is in fact represented by an
ensemble of resolvents, corresponding to an ensemble of polaron impurity models, similar to the
ensemble of effective single-site actions appearing in the cavity method.

To determine the interaction self-energy, we use an operator identity and rewrite Eq. (D.12)
into

Di(z) = Fi(z) + Fi(z)∆Hi(z)Di(z), (D.14)

with

Fi(z) = Ḡ(z) − Ḡ(z)Σi(z)Fi(z), (D.15)

which describes the effective medium with the interaction self-energy on site i,

Σi(z) =
∑

q

Pqvi(z − qΩ)|i〉〈i|, (D.16)

subtracted. Equation (D.14) corresponds directly to the Hamiltonian representation of the effec-
tive single-site action given in the main text.

Applying 〈i|(pi|...|qi)|i〉 on both sides of Eq. (D.14), with |i〉 and |pi) a Wannier state and a
phonon state on site i, we obtain [cf. Eq. (A.10)]

Dnm(z) = Fii(z − nΩ)δn,m −
√

ΩEpFii(z − nΩ)
[√
n+ 1Dn+1m(z) +

√
nDn−1m(z)

]

, (D.17)

with Dpq = 〈i|(pi|Di(z)|qi)|i〉 and

Fii(z) =
1

z − εi + G−1
ii (z) −R[Gii(z)]

. (D.18)

From Eq. (D.17) we find D00 in the form of a continued fraction [cf. (A.12)], which finally yields
for the local two-point function

Gii(z) =
1

[Fii(z)]
−1 − ΩEp

[Fii(z − 1Ω)]−1 − 2ΩEp

[Fii(z − 2Ω)]−1 − 3ΩEp

...

. (D.19)
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By inspection, the coherent potential then becomes

vi(z) =
ΩEp

[Fii(z − 1Ω)]−1 − 2ΩEp

[Fii(z − 2Ω)]−1 − 3ΩEp

[Fii(z − 3Ω)]−1 − 4ΩEp

...

. (D.20)

The construction of the polaron impurity models has been performed for a fixed realization
of on-site disorder. No configurational average has been performed, in contrast to the DCPA.
Operators as well as functions are still random variables. To treat the spatial fluctuations, we
now apply the renormalized perturbation series to each phonon subspace. Towards that end, we
recall H̄ =

∑

q Pqhq(z) and rewrite hq(z) as

hq(z) = h(i)
q (z) + ξi(z; q)|i〉〈i| + Γ, (D.21)

where the first term on the rhs h
(i)
q (z) is hq(z) with site i removed, the second term ξi(z; q) =

εi + vi(z − qΩ) + qΩ 5, and the third term Γ = −J∑j NN i{|i〉〈j| + |j〉〈i|}. [140]
As usual, the renormalized perturbation series works with a resolvent. Hence, we introduce

gq(z) = 1/(z − hq(z)) and apply the operator identity

gq(z) =
1

z − hq(z)

= Ξq(z) + Ξq(z)Γgq(z), (D.22)

with Ξq(z) = (z − h
(i)
q (z) − ξi(z; q))

−1. From 〈i|h(i)
q (z)|j〉 = 〈j|h(i)

q (z)|i〉 = 0 for all j follows that
〈i|Ξq(z)|i〉 = (z−ξi(z; q))−1, 〈i|Ξq(z)|j〉 = 〈j|Ξq(z)|i〉 = 0 for i 6= j, and 〈j|Ξq(z)|l〉 = 〈j|gq(z)|l〉(i)
for j, l 6= i. Thus, taking matrix elements with respect to Wannier states 〈i|...|j〉, Eq. (D.22)
yields, for i = j,

〈i|gq(z)|i〉 =
1

z − ξi(z; q)
− J

z − ξi(z; q)

∑

j NN i

〈j|gq(z)|i〉, (D.23)

and, for i and j next neighbors,

〈j|gq(z)|i〉 = −J
∑

m NN i

〈j|gq(z)|m〉(i)〈i|gq(z)|i〉. (D.24)

Combining Eq. (D.23) with Eq. (D.24) and specializing to a Bethe lattice yields

〈i|gq(z)|i〉 =



z − ξi(z; q) − J2
∑

j NN i

〈j|gq(z)|j〉(i)




−1

, (D.25)

with

〈j|gq(z)|j〉(i) =



z − ξj(z; q) − J2
∑

l 6=i NN j

〈l|gq(z)|l〉(j)




−1

. (D.26)

Note, although the renormalized perturbation series is separately applied to each phonon sub-
space, the subspaces are coupled through the coherent potential, which contains 〈j|gq(z)|j〉(i)
with q = 0, 1, ...,M .

Employing the self-consistency condition, 〈i|gq(z)|i〉 = Gii(z−qΩ) and 〈j|gq(z)|j〉(i) = G
(i)
jj (z−

qΩ), and putting q = 0, Eqs. (D.25) and (D.26) are identical with the single particle limit of the
stochastic recursion relations Eqs. (2.80) and (2.81).

5To obtain the qΩ term we used the (one-particle) completeness relation
∑

i
|i〉〈i| = 1.



Appendix E

Large Coordination Number Limit of the statDMFT

For a lattice with infinite coordination number, the statDMFT reduces to the DMFT. To demon-
strate this point, it is convenient to scale the transfer amplitude J → J̄/

√
K. [5]

Restricting for simplicity the discussion to the Bethe lattice, Eq. (2.82) shows that for K → ∞
cavity and local Green function are identical and Eq. (2.80) becomes

Giσiσ(iωn) =
1

iωn + µ− εi − J̄2Gave
σ (iωn) − Σσ(iωn)

, (E.1)

where we have used the central limit theorem to replace the hybridization function on the rhs by
the average of the local Green function. At this point the scaling of J is most convenient.

The self-energy is calculated from the effective single-site action S(i) where, again due to
the central limit theorem, the hybridization function is replaced by J̄Gave

σ . The self-energy is
therefore a functional of Gave

σ (iωn), i.e., on the rhs of Eq. (E.1) the only random variable is εi.
The sample average (1/K)

∑K
j=1(...) of Eq. (E.1) is therefore identical to the site average over εi.

Denoting the site average by 〈...〉εi
, we get

Gave
σ (iωn) =

〈

[

iωn + µ− εi − J̄2Gave
σ (iωn) − Σσ[εi, G

ave
σ ]
]−1

〉

εi

, (E.2)

which, together with

S(i)

∣

∣

∣

∣

K→∞
=

∫ β

0
dτdτ ′

∑

σ

c†iσ(τ)

{

[∂τ + εi − µ]δ(τ − τ ′)

+ J̄2Gave
σ (τ − τ ′)

}

ciσ(τ ′) + Sint(i) (E.3)

constitutes the DMFT equations for the average local Green function Gave
σ (iω). For a single

electron, Eqs. (E.2) and (E.3) reduce, for the case without disorder, to the dynamical coher-
ent potential approximation (DCPA) equations [104] and, for the case without electron-phonon
coupling, to the coherent potential approximation (CPA) equations. [103]

For the pure Anderson model this is illustrated in Fig. 2.28 for γ̄ = 0.5. With increasing
lattice coordination number K we observe two effects. First, the difference between cavity and
local Green function indeed disappears, as can be seen from the vanishing of the bumps due to
the van-Hove singularities; second, the local density of states converges to the CPA density of
states. Note also, Lifshitz tails, which are present within the statDMFT, also vanish, as expected,
with increasing K.
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Figure 2.28: Average LDOS for the Bethe lattice with connectivity K = 2, 4 and 8 (solid lines form
bottom to top). The dashed line is the DMFT LDOS, i.e. the LDOS for K → ∞. Electron-phonon
coupling is turned off (pure Anderson model) and γ̄ = 0.5.



Chapter 3

Electron Spin Dynamics in
Semiconductors [9–11]

This chapter presents a semiclassical kinetic theory for the non-equilibrium electron spin dynamics
in non-magnetic semiconductors. It is based to a large extend on a preprint [9], supplemented
with material from Refs. [10,11]. The approach accounts for elastic as well as inelastic scattering
and treats Elliott-Yafet and motional-narrowing processes, such as D’yakonov-Perel’ and variable
g-factor processes, on an equal footing. Focusing on small spin polarizations and small momentum
transfer scattering, we derive, starting from the full quantum kinetic equations, a Fokker-Planck
equation for the electron spin polarization. The dynamics of the spin polarization is thereby
visualized in terms of a “test” spin polarization which scatters off “field” particles (electrons,
impurities, phonons). We then construct, using a rigorous multiple time scale approach, a Bloch
equation for the macroscopic (~k-averaged) spin polarization on the long time scale, where the
spin polarization decays. Spin-conserving energy relaxation and diffusion, which occur on a short
time scale, after the initial spin polarization has been injected, are incorporated and shown to
give rise to a weight function which defines the energy averages required for the calculation
of the spin relaxation tensor of the Bloch equation. We give explicit expressions for the spin
relaxation tensor, applicable to bulk and quantum wells. To illustrate our approach, we calculate
for specific situations the lifetime of a photogenerated electron spin polarization in bulk GaAs
and a GaAs quantum well. For the bulk GaAs, we discuss the magnetic field dependence of
spin relaxation times taking electron-impurity and electron-phonon scattering into account. We
focus in particular on the competition between the quenching of the D’yakonov-Perel’ process
and the field-induced variable g-factor process. We find an optimal magnetic field for which
the spin lifetimes are maximal and point out that the sign of the slope of the field dependence
of the transverse spin lifetime reveals whether the Elliott-Yafet or the D’yakonov-Perel’ process
dominate spin relaxation at small magnetic fields. For a GaAs quantum well, we calculate spin
lifetimes at temperatures and densities where electron-electron and electron-impurity scattering
dominate. We find that spin lifetimes are non-monotonic functions of temperature and density.
Our results show that at electron densities and temperatures, where the cross-over from the
non-degenerate to the degenerate regime occurs, spin lifetimes are particularly long.

3.1 Introductory Remarks

The spin degree of freedom of an electron provides an additional variable that potentially can
be used to add new functionality to electronic, optoelectronic and magnetoelectronic devices or
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to even build radically new devices entirely based on the coherence of electron spin states. This
has led to the newly emerging field of spintronics. [152,153] Of particular interest is a subclass of
spintronics device concepts, which relies on the capability to inject, control, and detect electron
spin polarizations in non-magnetic semiconductors. [154,155] The spin polarization, which would
enable the device operation, is here a non-equilibrium state resulting from the response to an
external probe, such as absorption of circularly polarized light or electrical injection from a
spin polarized contact. After the external probe is removed, the spin polarization relaxes to an
unpolarized equilibrium state. The characterization of the spin polarization, e.g., in terms of
lifetimes and transport coefficients, requires therefore a kinetic theory.

The main spin relaxation processes for itinerant electrons in non-magnetic semiconductors are
the Elliott-Yafet (EY) process [156, 157], that leads to spin-flip scattering, the Bir-Aronov-Pikus
(BAP) process [158] due to electron-hole exchange scattering, and, in materials without inversion
symmetry, the D’yakonov-Perel’ (DP) process [159] in which spin states precess because of spin
off-diagonal Hamiltonian matrix elements resulting from a combination of spin-orbit coupling
and inversion asymmetry. An external magnetic field, in many cases required to control and
manipulate the electron spin, can also influence the electron spin dynamics. It quenches the DP
process [160], thereby tending to extend the spin lifetimes as a function of magnetic field, and it
opens a spin relaxation channel due to the ~k-dependence of the electron g-factor, which forces the
spin of electrons in different quantum states to precess around an external magnetic field with
different rates. [11, 161] For brevity we will refer to this mechanism as a variable g-factor (VG)
process.

At the microscopic level, the EY, DP, BAP, and VG spin relaxation processes are different
manifestations of the spin-orbit coupling. The coupling between electron spin and orbital motion
produces however not only spin decoherence but it also provides opportunities to manipulate
spin polarization. For instance, spin-orbit coupling leads to optical selection rules that allow
the generation and detection of a non-equilibrium spin polarization. Optical transitions across
the energy gap of a semiconductor are governed by electric dipole selection rules. Absorption of
circularly polarized light with a wavelength corresponding to the fundamental semiconductor gap
produces in direct gap semiconductors a spin-polarized electron distribution in the conduction
band. The same optical selection rules allow the dynamics of a non-equilibrium electron spin
polarization to be optically probed. In fact, spin dynamics in semiconductors has been extensively
studied in magneto-optics in the 1970s and 80s [162–165] using various spin-sensitive emission,
transmission, and reflection spectroscopies. These spectroscopies are now readily adaptable to
spatially and time resolved measurements. [166–185]

As an illustration, we show in Fig. 3.1 experimental data from Kikkawa and coworkers. [169]
They employed time-resolved Faraday rotation spectroscopy to determine the spin lifetime in
bulk GaAs. In a Faraday rotation experiment, one measures the pump-induced changes in the
polarization of a linearly polarized, time delayed probe pulse. The pump pulse is circularly
polarized and produces a non-equilibrium spin polarization. Because of the spin-dependent optical
selection rules, a non-equilibrium spin polarization (imbalance of spin-up and spin-down electrons)
leads to a different index of refraction for left- and right-hand polarized light propagating in the
direction of the quantization axis (propagation direction of the pump pulse). The material is
birefringent and thus rotates the polarization axis of linearly polarized light. The rotation angle
is a direct measure of the spin polarization. Thus, its time evolution reflects the time evolution of
the spin polarization. Usually a small magnetic field is applied perpendicular to the quantization
axis, in which case the spin polarization precesses, giving rise to an oscillatory time dependence of
the rotation angle. The envolope of the oscillations is then a direct measure of the spin lifetime.

In materials with small spin-orbit coupling, spin lifetimes are limited by the weak hyperfine
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Figure 3.1: Time resolved Faraday rotation data from Kikkawa and coworkers. [169] Shown are data
for undoped and n-type GaAs at B=4T and T=5K. The authors normalized the data just after zero
pump-probe delay and offset the plots for clarity, with zeros marked by dotted lines. The inset shows
the transverse spin relaxation time vs. field. Electron densities are n = 0, 1016, 1018, and 5 × 1018cm−3,
respectively.

interaction and therefore particularly long. On the other hand, external probes usually couple to
the orbital part of the electron wavefunction. Materials with weak (or without) spin-orbit coupling
provide therefore no practical means to address the spin degree of freedom and are therefore not
suited for spintronics applications. A common theme of recent theoretical investations of the
spin dynamics in bulk [11, 186–189] and dimension-reduced semiconductor structures [190–203]
is therefore the manipulation of the decay channels, by either external fields or heterostructure
design, and the identification of conditions under which the electron spin is particularly robust.

Theoretical investigations are based on the early work [156–159] augmented by modern band
structure theory for bulk and dimension-reduced semiconductors. In the simplest approach, the
EY and BAP spin relaxation rates can be calculated with the Golden Rule for, respectively,
direct spin flip scattering on impurities, phonons, and carriers and exchange spin-flip scattering
on carriers. The calculation of the spin-flip rates due to motional-narrowing (DP and VG)
processes, on the other hand, have to be based on a kinetic equation for the non-equilibrium
spin polarization. Usually, a semiclassical Boltzmann-type equation, which treats only the spin
quantum mechanically, is sufficient. Not always is the Boltzmann equation explicitly solved,
however. Instead, a common procedure is to adapt the expression for the spin relaxation rate
originally derived by D’yakonov and Perel’ [159] to the scattering processes under consideration.

In this chapter we develop a systematic kinetic theory of spin relaxation, based on non-
equilibrium Green function techniques, and apply it to specific physical situations in bulk and
quantum wells. Because electron spin lifetimes are usually much larger than hole spin lifetimes
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in semiconductors, we focus on spin relaxation of electrons. We furthermore asssume that on the
time scale of the experiments the optically generated valence band holes already recombined with
conduction band electrons. The BAP process is then negligible. We focus therefore on the EY,
DP, and VG processes.

In contrast to previous studies, we treat spin-flip (EY) and motional-narrowing (DP and VG)
spin relaxation processes on an equal footing. As a result, we are able to study in detail the
interplay of the various relaxation channels, in particular the competition of the DP process and
the appearance of the VG process. Because of the different angle dependences, a Matthiessen-
type rule holds for isotropic semiconductors. The total spin relaxation tensor is then simply the
sum of the individual spin relaxation tensors. [11] Focusing on small spin polarizations and small
momentum transfer scattering, we derive from the full quantum kinetic equations for the electron
Green functions, a semiclassical Fokker-Planck equation for non-equilibrium spin polarization.
On- and off-shell scattering processes are treated within a diffusion approximation. As a result,
the time evolution of the non-equilibrium spin polarization can be visualized in terms of a “test”
spin polarization scattering off “field” particles (electrons, impurities, phonons). The Fokker-
Planck equation describes the time evolution on the short time scale, where spin conserving
scattering occurs, and on the long time scale, where the spin decays. To separate the fast from
the slow time evolution, we perform a rigorous multiple time scale analysis of the Fokker-Planck
equation. Combined with an averaging procedure, the multiple time scale approach enables us to
construct, on the time scale of spin relaxation, a Bloch equation for the macroscopic (~k-averaged)
non-equilibrium spin polarization, which is also the quantity measured in, e.g., time-resolved
Faraday and Kerr rotation experiments. [167–170, 180, 181, 183] The Bloch equation contains a
spin relaxation tensor, the diagonal elements of which are the spin relaxation rates. They are
either given in terms of a weighted energy average of a spin-flip rate (EY process) or a weighted
energy average of a generalized relaxation time (DP and VG processes). The weight function turns
out to be directly related to the quasi-stationary spin polarization, which is the terminating state
of the initial, fast spin-conserving time evolution of the injected spin polarization. Thus, through a
sequence of (controlled) steps, which leads us through an hierarchy of kinetic equations – quantum
kinetic equation, Fokker-Planck equation, Bloch equation – , we are able to give a rather detailed
picture of the time evolution of an optically injected non-equilibrium spin polarization.

3.2 Spin Dependence of Semiconductor Electronic Structure

We consider conduction band (CB) electrons in III-V semiconductors, e.g., GaAs, in the presence
of an applied magnetic field. The model used here applies to both bulk and quantum well
situations. A more detailed discussion of the spin dependence of the semiconductor band structure
can be, e.g., found in Ref. [10]. Within an envelope function approach [204, 205], which treats
the two states at the conduction band minimum explicitly and includes a large set of states
perturbatively, the effective mass Hamiltonian for the CB electrons can be cast into the form

Hαα′( ~K) = ε( ~K)δαα′ +
h̄

2
~ΩL ·~σαα′ +

h̄

2
[~ΩIA( ~K) + ~Ωg( ~K)]·~σαα′ , (3.1)

where ~K = ~k − (e/h̄c) ~A(~r) and ~A(~r) is the vector potential. The “spin basis” for the CB
electrons used to define the model (3.1) is α = + and α = −, where α = + (α = −) denotes a
state which is mostly spin-up (spin-down) with a small admixture of spin-down (spin-up). The
small admixtures of the “wrong” spin component is a consequence of spin-orbit coupling and
inversion asymmetry, which leads to an admixture of bonding p-states into the s-type conduction
band wave functions. [10]
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The first term denotes the dispersion of the Kramers degenerate conduction band which,
depending on the sophistication of the envelope function approach, could contain nonparabolicity
effects. For quantum wells ~k and ε(~k) denote the in-plane momentum and the in-plane dispersion
of the conduction subband under consideration. The second term comprises the Larmor precession
due to the external magnetic field, with h̄~ΩL = µBg

∗ ~B the Larmor energy vector. Here µB and g∗

denote the Bohr magneton and the electron g-factor. The third term describes spin off-diagonal
Hamiltonian matrix elements arising from the coupling to higher lying states. The most important
of which are the splitting of the conduction band due to inversion asymmetry (IA) and the term
which leads to a ~k-dependent electron g-factor. For bulk semiconductors, the two contributions
are given by

h̄~ΩIA( ~K) = 2δ0~κIA( ~K) , (3.2)

h̄~Ωg( ~K) = 2a4K
2 ~B + 2a5{ ~K, ~B · ~K} + 2a6~τ( ~K, ~B) , (3.3)

respectively. The definition of the vectors ~κIA( ~K) and ~τ( ~K, ~B) and of the parameters δ0 and
ai can be found in Refs. [204, 205] and {.., ..} denotes an anticommutator. The expressions for
conduction subbands in a quantum well are obtained by averaging the bulk expressions (3.2) and
(3.3) over the subband envelope function.

In addition to bulk inversion asymmetry, dimension-reduced semiconductors can have ad-
ditional sources of asymmetry due to interfaces which share no common atom [182] or due to
layer design (structural inversion asymmetry [190]). Both mechanisms can be cast into spin off-
diagonal Hamiltonian matrix elements and can be therefore treated in the same way as the spin
off-diagonal terms due to bulk inversion asymmetry.

For a complete description, a collision term arising from electron-impurity, electron-phonon
and electron-electron scattering,

Hc = Hei +Hep +Hee ,

is added to the effective mass Hamiltonian. The electron-impurity term reads

Hei =
∑

~k~k′

∑

αα′

Mα,α′(~k,~k′)c†~kα
c~k′α′ , (3.4)

with a scattering matrix element given by

Mα,α′(~k,~k′) =
∑

j

U(~k − ~k′)ei(
~k−~k′)~rj Iαα′(~k,~k′) . (3.5)

The Bloch states for the conduction band are not pure spin states because of spin-orbit coupling
and inversion asymmetry. The scattering matrix element contains therefore an overlap factor

Iαα′(~k,~k′) = 〈U
α,~k

|U
α′,~k′〉 , (3.6)

which is of order unity for α = α′ (spin conserving scattering) and is small, but not zero otherwise
(spin non-conserving scattering). The electron-phonon collision term would have the same struc-
ture as Eq. (3.4) but with phonon creation and annihilation operators appearing in the matrix
element Mαα′(~k,~k′). The electron-electron scattering contribution has the form

Hee =
1

2

∑

~kiαi

Mα1α2α3α4(
~k1, ~k2, ~k3, ~k4)c

†
~k1α1

c†~k2α2
c~k3α3

c~k4α4
, (3.7)
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where the scattering matrix element,

Mα1α2α3α4(
~k1, ~k2, ~k3, ~k4)=V (~k1 − ~k4)Iα1α4(

~k1, ~k4)Iα2α3(
~k2, ~k3)δ~k1+~k2,~k3+~k4

, (3.8)

contains two overlap factors. The functions U(~k) and V (~k) denote, respectively, the potential of
a single impurity (neutral or ionized) and the Coulomb potential between two conduction band
electrons.

The model Hamiltonian is characterized by ε(~k), ~ΩIA(~k), ~Ωg(~k), and Iα,α′(~k,~k′). These quanti-
ties need to be obtained by an electronic structure calculation. The formal structure of the kinetic
theory described in the next section is independent of the particular form of these quantities.

3.3 Semiclassical Kinetic Theory

In this section we give a systematic derivation of the Fokker-Planck equation governing the elec-
tron spin relaxation in the limit of small spin polarizations. The derivation is independent of
dimensionality, applying to bulk semiconductors and semiconductor heterostructures, and treats
motional-narrowing (DP and VG) and spin-flip (EY) spin relaxation processes on an equal foot-
ing. To obtain a Fokker-Planck equation, we restrict ourselves to the Born approximation, but
collective effects giving rise to dynamical screening of the Coulomb interaction can be approx-
imately incorporated at the level of a quantum analog to the Lenard-Balescu equation. [206]
Besides its intuitive interpretation in terms of a small “test” spin polarization scattering off a
bath of “field” particles (impurities, electrons and phonons), causing dynamical friction, diffu-
sion, and eventually relaxation for the “test” spin polarization, the Fokker-Planck equation is
the starting point for a multiple time scale analysis which results in the derivation of a Bloch
equation for the macroscopic (~k-averaged) spin polarization. Its decay is characterized by the
diagonal elements of a spin relaxation tensor, which are quadratures of either a spin-flip rate (EY
process) or a generalized relaxation time multiplied by a precession rate (DP and VG processes).1

Since the derivation is quite lengthy and to some extent rather formal we first give a short
outline of the main steps. We start from the full quantum kinetic equations for the Keldysh Green
functions. [207–210] Each component of the Keldysh Green function is a 2× 2 matrix in electron
spin space. In the first step we derive, within the semiclassical approximation, a kinetic equation
for the density matrix. This accounts to treating momentum scattering processes as instantaneous
on the time scale of spin relaxation, which is usually the case. Calculating the self-energies which
appear in the semiclassical kinetic equation in the Born approximation, linearizing with respect to
spin polarization, and expanding the self-energies up to second order in the momentum transfer
(diffusion approximation) finally yields a Fokker-Planck equation for the spin polarization, which
we then analyze in terms of multiple time scale perturbation theory.

3.3.1 Kinetic Equations

For a spatially homogeneous system (we assume a constant magnetic field ~B), the information
about spin relaxation is contained in the electronic density matrix, which, due to the spin degree
of freedom, is a 2 × 2 matrix in spin space,

Nα1α2(
~k, t) =< (c†~kα1

c~kα2
)(t) > , (3.9)

1Depending on the geometry, the spin relaxation rates are usually linear combinations of the diagonal elements
of the spin relaxation tensor.
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but diagonal in ~k-space. Here, the operators evolve in time with the full Hamiltonian, including
the time-dependent perturbation, which could be, e.g., a circularly polarized light pulse applied
at time t = t0. To perform the averaging in Eq. (3.9) denoted by < [...] >, we consider the
system to be in thermodynamical equilibrium for t < t0, take the limit t0 → −∞ and evaluate
the expectation value in Eq. (3.9) with respect to the equilibrium density matrix. [210]

To derive a kinetic equation for the density matrix it is convenient to start from Keldysh
Green functions. [207, 208] For a constant magnetic field, the vector potential is a function of ~r.
It is therefore necessary to initially work with kinetic equations in real space. In this subsection
we set h̄ = 1. Introducing a numerical index 1 that stands for ~r1α1t1 and 2 for ~r2α2t2, we write
in the notation of Ref. [209]

iĜ12 = i

(

G++
12 G+−

12

G−+
12 G−−

12

)

. (3.10)

Note that each component of the Keldysh Green function is a 2 × 2 matrix in spin space. Intro-
ducing further a self-energy

Σ̂12 =

(

Σ++
12 Σ+−

12

Σ−+
12 Σ−−

12

)

, (3.11)

we set up two matrix Dyson equations, one where the time differentiation is with respect to t1
and one where it is with respect to t2:

∂t1Ĝ12 = −iτ̂zδ12 − i(ε̂Ĝ)12 − iτ̂z(Σ̂Ĝ)12 , (3.12)

∂t2Ĝ12 = iτ̂zδ12 + i(Ĝε̂)12 + i(ĜΣ̂)12τ̂z , (3.13)

with δ12 = δ(t1−t2)δ(12) and the energy matrix ε̂12 = δ(t1−t2)ε̂(12) = δ(t1−t2)τ̂0δ(12)ε(−i∇~r1
−

(e/c) ~A(~r1)), where we neglect nonparabolicities in the dispersion. We adopt the convention that
numerical indices written as a subscript contain the time variable, whereas numerical indices
written as an argument do not. Matrix multiplication with respect to the Keldysh indices is
implied and internal variables are summed (integrated) over; τ̂z is a Pauli matrix and τ̂0 is the
unit matrix in Keldysh space.

Subtracting Eq. (3.13) from Eq. (3.12) gives

[L̂, Ĝ]12 = τ̂z(Σ̂Ĝ)12 − (ĜΣ̂)12 τ̂z , (3.14)

where [.., ..] denotes the commutator. To compactify the notation, we introduced a differential
operator

L̂13 = τ̂0δ13L(3) = τ̂0δ13(i∂t3 − ε(3)) . (3.15)

It is understood that in the second term of the commutator, the operator L̂32 acts to the left
with the temporal differential operator ∂t3 replaced by its adjoint −∂t3 .

Equation (3.14) contains two time variables. To obtain a kinetic equation for the electronic
density matrix, which depends only on a single time variable, it is necessary to perform the
equal time limit. This is most conveniently done in the (mixed) Wigner representation, where
the equal time limit reduces to an integration. Separating the self-energy into a singular and a
regular part [209]

Σpq
12 = ∆pq(12; t1)δpqδ(t1 − t2) + Σ̃pq

12 , (3.16)
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introducing relative and center variables, ~r = ~r1 − ~r2, ~R = (~r1 + ~r2)/2, τ = t1 − t2, and T =
(t1 + t2)/2, and defining a Fourier transformation with respect to the relative variables,

A(~R, T,~k, ω) =

∫ ∞

−∞
dτ

∫

d~reiωτ−i~k~rA(~R, T,~r, τ) , (3.17)

together with a gradient operator [210]

GAB = exp
1

2i

[

∂A
T ∂

B
ω − ∂A

ω ∂
B
T + ∇A

~k
· ∇B

~R
−∇A

~R
· ∇B

~k

]

, (3.18)

the equal time limit of the ++ component of Eq. (3.14) can be written as

D(~R, T,~k) = F (~R, T,~k) + C(~R, T,~k) , (3.19)

with a driving term on the lhs,

D(~R, T,~k) =

∫ ∞

−∞

dω

2π

[

GLGL(~R, T,~k, ω)G++(~R, T,~k, ω)

− GGLG++(~R, T,~k, ω)L( ~R, T,~k, ω)

]

, (3.20)

and a rhs, which contains a molecular field term arising from the singular part of the self-energy,

F (~R, T,~k) =

∫ ∞

−∞

dω

2π

[

G∆G∆++(~R, T,~k)G++(~R, T,~k, ω)

− GG∆G++(~R, T,~k, ω)∆++(~R, T,~k)

]

, (3.21)

and a collision term due to the regular part

C(~R, T,~k) =

∫ ∞

−∞

dω

2π

[

GΣ̃GΣ̃++(~R, T,~k, ω)G++(~R, T,~k, ω)

− GGΣ̃G++(~R, T,~k, ω)Σ̃++(~R, T,~k, ω)

+ GΣ̃GΣ̃+−(~R, T,~k, ω)G−+(~R, T,~k, ω)

− GGΣ̃G+−(~R, T,~k, ω)Σ̃−+(~R, T,~k, ω)

]

. (3.22)

The semiclassical approximation amounts to the assumption that the Green functions and self-
energies vary slowly on the macroscopic scales, T and ~R, respectively. It is therefore sufficient to
keep in Eq. (3.19) only the leading order terms in a gradient expansion. The leading order of the
rhs of Eq. (3.19) is the zeroth order, i.e., Eqs. (3.21) and (3.22) with GAB → 1. The lhs of Eq.
(3.19), however, has to be determined to first order, because the zeroth order vanishes. Using

L(~R, T, ω,~k) = ω + ε( ~K) , (3.23)

we explicitly obtain

D(~R, T,~k) = i

∫ ∞

−∞

dω

2π
[∂TG

++(~R, T,~k, ω) −∇ ~R ε( ~K) · ∇~k
G++(~R, T,~k, ω)

+ ∇~k
ε( ~K) · ∇~R G++(~R, T,~k, ω) . (3.24)
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To ensure gauge invariance of the kinetic equation we follow Ref. [211] and consider the
generalized momentum ~K = ~k− (e/c) ~A(~R) as an independent variable instead of the momentum
~k. Using the two identities [211],

∇~R a( ~K) = ∇ ~K a( ~K) · ∇~R
~K + ∇ ~K a( ~K) × (∇~R × ~K) ,

~a ·~b× (∇~R × ~c) = (~a · ∇ ~R ~c) ·~b− (~b · ∇~R ~c) · ~a ,

Eq. (3.24) becomes

D(~R, T, ~K) =

(

∂T +
e

c
∇ ~K ε( ~K) · ( ~B ×∇ ~K) + ∇ ~K ε( ~K) · ∇~R

)

× i

∫ ∞

−∞

dω

2π
G++(~R, T, ~K, ω) . (3.25)

We assume weak interactions and replace the full Green functions by the noninteracting Green
functions (quasi-particle ansatz),

Gpq(~R, T, ~K, ω) = Gpq
0 (~k → ~K, ω)|

N0(~k)→N(~R,T, ~K)
, (3.26)

where the noninteracting density matrix N0(~k) is replaced by the full density matrix N( ~R, T, ~K).
Performing the ω−integrations in Eqs. (3.21), (3.22), and (3.25) then yields the semiclassical
kinetic equation for the electronic density matrix:

(

∂T +
e

c
∇ ~K ε( ~K) · ~B ×∇ ~K + ∇ ~K ε( ~K) · ∇~R

)

N(~R, T, ~K) =

i

[

N(~R, T, ~K),∆++(~R, T, ~K) + Σ̃++(~R, T, ~K, ε( ~K))

]

+iN(~R, T, ~K)Σ̃−+(~R, T, ~K, ε( ~K)) + iΣ̃+−(~R, T, ~K, ε( ~K))[1 −N( ~R, T, ~K)] . (3.27)

To obtain a closed kinetic equation for the electronic density matrix, internal Green functions,
which appear in the self-energies, have to be of course also eliminated according to Eq. (3.26).
Details concerning the calculation of self-energies are given in the next section.

For a homogeneous magnetic field, the electronic density matrix does not explicitly depend on
~R. The ~R dependence can be therefore neglected. For a quadratic dispersion, ε( ~K) = ~K2/2m∗

(h̄ = 1 in this subsection), the Lorentz term moreover becomes

(e/c)∇ ~K ε( ~K) × ~B · ∇ ~K = ( ~K × ~ΩC) · ∇ ~K = −i~ΩC · ~L , (3.28)

where ~ΩC = e ~B/m∗c is the cyclotron energy vector and ~L the angular momentum operator in
~K-space, and we obtain the kinetic equation for the electronic density matrix in a more familiar
form:

(

∂T − i~ΩC · ~L
)

N(T, ~K) = i

[

N(T, ~K),∆++(T, ~K) + Σ̃++(T, ~K, ε( ~K))

]

+ iN(T, ~K)Σ̃−+(T, ~K, ε( ~K))

+ iΣ̃+−(T, ~K, ε( ~K))[1 −N(T, ~K)] . (3.29)

This equation is the basis for the calculation of the spin relaxation time in spatially homo-
geneous systems subject to a constant magnetic field. The first term on the rhs describes the



108 Electron Spin Dynamics in Semiconductors [9–11]

������������

����������������������������������������������������

��������������������������������������������

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.2: Diagrammatic representation of self-energies in the Born approximation for electron-electron
(a)–(d), electron-impurity (e), and electron-phonon scattering (f). Diagram (g) denotes the self-energy
due to spin off-diagonal Hamiltonian matrix elements.

coherent motion in a molecular field modified by correlation effects. If ∆++, Σ̃++, and N where
scalar functions, as in ordinary transport theory, this term would vanish. The molecular field term
is therefore a consequence of the quantum mechanical treatment of the spin degree of freedom. To
the singular part of the self-energy contribute the spin off-diagonal terms in the Hamiltonian and
the Hartree-Fock fields due to electron-electron scattering. Dissipation and relaxation originate
from the regular part of the self-energy and give rise to the second and third term on the rhs.
They are at least second order in the interaction. Formally, they correspond to the scattering-out
and the scattering-in terms in a matrix-Boltzmann equation. The matrix structure is of course a
consequence of the full quantum mechanical description of the spin. Only momentum scattering
is treated classically.

3.3.2 Calculation of the Self-Energies

The semiclassical approach to furnish the self-energies in the matrix-Boltzmann equation (3.29),
valid for magnetic fields, which do not restructure the electron dispersion, is to represent in-
teraction processes in terms of diagrams, calculate the diagrams using standard rules [208] to
obtain Σ̃pq(~k, t, t′) and ∆pq(~k, t), perform the zeroth order gradient expansion, and then replace
all internal Green functions according to Eq. (3.26). This heuristic strategy leads to self-energies,
which can be expressed in a manifestly gauge invariant form by writing the internal momentum
integrations in terms of the generalized momentum ~K. The formal structure of the self-energies is
then the same as without magnetic field. Thus, within the semiclassical approach, the magnetic
field gives only rise to the Lorentz term and the terms coming directly from the spin off-diagonal
part of the Hamiltonian.

In Fig. 3.2 we depict the self-energies in the Born approximation for electron-electron (a–
d), electron-impurity (e), and electron-phonon (f) scattering. Diagram (g) corresponds to the
self-energy due to the spin off-diagonal term in the Hamiltonian (3.1).

The Hartree-Fock diagrams (a) and (b) contribute to the instantaneous self-energy ∆++. They
are second order in the spin polarization and therefore, for sufficiently small spin polarizations,
negligible. There are two second order diagrams due to electron-electron scattering, the direct (c)
and the exchange (d) Born diagram. Anticipating that soft scattering dominates, we neglect the
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exchange diagram (d). The direct Born diagram contributes to Σ̃++, Σ̃+−, and Σ̃−+. It can be
shown, however, that Σ̃++ is at least second order in the spin polarization and therefore negligible
in the limit of small spin polarizations. The Σ̃−+ and Σ̃+− components, contributing to the col-
lision integral, are in contrast linear in the spin polarization and cannot be neglected. Diagrams
(e) and (f), corresponding to the Born approximation for electron-impurity and electron-phonon
scattering, only contribute to Σ̃pq. As in the case of electron-electron scattering, the ++ compo-
nent can be again neglected, if the spin polarization is small enough, whereas the +− and −+
components contribute in linear order in the spin polarization to the collision integral. Diagram
(g), corresponding to the spin off-diagonal part of the Hamiltonian (3.1), is linear in the spin
polarization and contributes to ∆++. Eventually it leads to a torque force acting on the spin
polarization.

Anticipating small spin polarizations, we neglect Σ̃++ and the Hartree-Fock contribution to
∆++. Writing in the Born approximation furthermore IB[N ] = Iee

B [N ] + Iep
B [N ] + Iei

B [N ] for the
second and third term on the rhs of Eq. (3.29), the semiclassical kinetic equation for the electronic
density matrix reduces to

(

h̄∂t − ih̄~ΩC · ~L
)

N(~k, t) =
i

2

[

N(~kt),
(

h̄~ΩL + h̄~ΩIA(~k) + h̄~Ωg(~k)
)

· ~σ
]

+ IB [N ] , (3.30)

where we relabeled the center time T → t and adjusted to the notation of Eq. (3.9); h̄ is explicitly
included and the generalized momentum is now denoted by ~k.

Equation (3.30) is a matrix-Boltzmann equation similar to the semiconductor Bloch equations
frequently used to describe optically pumped semiconductors. [210] Thus, numerical techniques
used for the solution of the semiconductor Bloch equations can be adopted to the numerical
solution of Eq. (3.30). Calculations of this kind have been successfully performed for various
situations. [186, 187, 195, 201–203]

To avoid a numerical solution, we focus on small spin polarizations and linearize the Born
collision integral with respect to the spin polarization. It is important to note that the equilibrium
density matrix Neq(~k) = N(~k, t → ∞) is not diagonal in the “spin basis”. Expanding the
equilibrium density matix in terms of Pauli matrices yields

Neq(~k) = f(~k) +
1

2
~σ · ~Seq(~k) , (3.31)

where f(~k) = (1/2)TrNeq(~k) = (f+(~k)+f−(~k))/2 is half of the sum of the equilibrium distribution

functions of the spin up and spin down electrons and ~Seq(~k) is the equilibrium spin polarization
(which vanishes if integrated over all momenta). Accordingly, we also write for the density matrix
at arbitrary times

N(~k, t) = f(~k) + δf(~k, t) +
1

2
~σ · [~Seq(~k) + δ~S(~k, t)] , (3.32)

with δf(~k, t) and δ ~S(~k, t) the changes induced by optical pumping or by electrical injection. We
defined Neq(~k) for t→ ∞, that is, it contains the electrons created by the perturbation and both

δ~S(~k, t) and δf(~k, t) have to vanish for t→ ∞.

Inserting the expansion (3.32) into the Boltzmann equation (3.30) yields two kinetic equations,
one for the charge component δf(~k, t) and one for the spin component δ ~S(~k, t). The collision terms
couple the two equations. If however only a small portion of the total number of electrons initially
contributed to the spin polarization, i.e. if δf(~k, t) � f(~k), the coupling can be ignored and it
suffices to focus on the equation for δ ~S(~k, t) alone.
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Since the total spin polarization ~Seq(~k) + δ~S(~k, t) is small, we linearize the Born collision

integral with respect to both ~Seq(~k) and δ~S(~k, t). Thus,

IB[N ] = IB [Neq] + IB [f + δf, δ ~S] . (3.33)

If we now apply Tr~σ[...] on both sides of Eq. (3.30), use IB[Neq] = 0 as well as ~ΩIA(~k)×~Seq(~k) = 0,

because, by construction, the equilibrium density matrix Neq(~k) commutes with HIA, and ignore

furthermore δf in IB [f + δf, δ ~S], we get a closed kinetic equation for the non-equilibrium spin
polarization

(

h̄∂t − ih̄~ΩC · ~L
)

δ~S(~k, t) =
(

h̄~ΩL + h̄~ΩIA(~k) + h̄~Ωg(~k)
)

× δ~S(~k, t) + JB [f, δ ~S] (3.34)

with JB [f, δ ~S] = Tr~σIB [f, δ ~S].
The collision integral can be further simplified if we split the spin-flip matrix into a leading

spin conserving diagonal part and a small off-diagonal part which describes spin-flip scattering.
Since nonparabolicities are small, the diagonal part is approximately equal to the unit matrix
and we get I(~k, ~k′) ' 1 + δI(~k, ~k′), with δI(~k, ~k′) � 1. Expanding the collision integrals up to
second order in δI(~k, ~k′) gives

JB [f, δ ~S] = JB [f, δ ~S](0) + JB [f, δ ~S](1) + JB [f, δ ~S](2) . (3.35)

The first order term J
(1)
B [f, δ ~S] potentially mixes EY, DP, and VG spin relaxation channels, but

for semiconductors with high symmetry it does not contribute to the spin relaxation rates.
The kinetic equation for the excess spin polarization becomes therefore

(

h̄∂t − ih̄~ΩC · ~L
)

δ~S(~k, t) = h̄~ΩL × δ~S(~k, t) +
(

h̄~ΩIA(~k) + h̄~Ωg(~k)
)

× δ~S(~k, t)

+ J
(0)
B [f, δ ~S] + J

(2)
B [f, δ ~S] . (3.36)

This equation contains motional-narrowing (DP and VG) and spin-flip (EY) spin relaxation

processes on an equal footing. The Elliott-Yafet process is simply encoded in J
(2)
B [f, δ ~S] whereas

the motional-narrowing processes result from the combined action of the torque forces given by

the second term on the rhs and the spin conserving scattering processes comprising J
(0)
B [f, δ ~S].

Independent of the scattering process, the structure of the collision integrals in Eq. (3.36) is
(ν = ei, ee, and ep)

J (0)
ν [f, δ ~S] =

∑

~q

[W ν(~k + ~q; ~q) δ ~S(~k + ~q, t)−W ν(~k; ~q) δ~S(~k, t)] , (3.37)

J (2)
ν [f, δ ~S] =

∑

~q

W ν(~k + ~q; ~q) ~g(~k,~k + ~q) ×
[

~g(~k,~k + ~q) × δ~S(~k + ~q, t)

]

, (3.38)

where, for concise notation, we introduced a spin-flip vector

~g(~k,~k
′
) =







ImI+−(~k,~k
′
)

ReI+−(~k,~k
′
)

0






, (3.39)

with I+−(~k,~k
′
) the off-diagonal element of the overlap matrix (3.6). This is a result of the Born

approximation and the linearization with respect to the spin polarization. In general, the structure
of the collision integrals depends on the scattering process. Here, however, the scattering process
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enters only through W ν(~k; ~q), the probabilities for a transition between momentum state ~k − ~q
and ~k. For electron-ionized-impurity scattering, for instance,

W ei(~k; ~q) = 2πNi|U(q)|2δ(ε(~k − ~q) − ε(~k)) , (3.40)

while for electron-electron scattering,

W ee(~k; ~q) = 4π|V (q)|2
∑

~k′

{

[1 − f(~k − ~q) − f(~k
′
+ ~q)]f(~k

′
)

+f(~k − ~q)f(~k
′
+ ~q)

}

δ(ε(~k)+ε(~k
′
)−ε(~k − ~q)−ε(~k′

+ ~q)), (3.41)

with U(q) and V (q) bare Coulomb potentials, which, however, we later screen phenomenologi-
cally. Similar expressions hold for electron-phonon scattering. For electron impurity scattering,
which is elastic, W ei(~k + ~q; ~q) = W ei(~k; ~q); moreover W ei(~k; ~q) is independent of the equilibrium
distribution of the spin-up and the spin-down electrons. In general, however, the transition proba-
bilities depend on the equilibrium distribution of the electrons, and, in the case of electron-phonon
scattering, also on the equilibrium distribution of the phonons.

3.3.3 Diffusion Approximation

The simple form of the collision integrals (3.37) and (3.38) suggests to conceptualize the dynam-
ics of the non-equilibrium spin polarization in terms of spin-polarized “test” electrons, scattering
off an equilibrated bath of “field” particles (impurities, electrons, and phonons). Usually this
picture can be only applied to electron-impurity and electron-phonon scattering, where the scat-
tering partners belong to different species, and not to electron-electron scattering, where the
scattering partners belong to the same species. It is only within the linearized spin dynamics,
which essentially treats the electrons comprising the non-equilibrium spin polarization as a sep-
arate species, that the “test-field-particle concept” can be applied to electron-electron scattering
as well. We now take full advantage of the simplicity of the collision integrals and expand the
collision integrals with respect to the momentum transfer ~q. As a result the integro-differential
equation (3.36) becomes a differential equation.

The on-shell spin-conserving process due to elastic electron-impurity scattering yields

J
(0),on
B [f, δ ~S] =

∑

n

∑

i1,...,in

Cei
i1,...,in(~k)

∂n

∂ki1 ...∂kin

δ~S(~k, t) , (3.42)

whereas the inelastic spin-conserving processes due to electron-electron or electron-phonon scat-
tering give rise to an off-shell contribution

J
(0),off
B [f, δ ~S] =

∑

ν=ee,ep

∑

n

∑

i1,...,in

∂n

∂ki1
...∂kin

Cν
i1,...,in(~k)δ~S(~k, t) , (3.43)

where, in both cases, the moments are defined by (ν = ei, ee, ep)

Cν
i1,...,in(~k) =

1

n!

∑

~q

qi1 ...qinW
ν(~k; ~q) . (3.44)

The transition probability W ν(~k; ~q) depends on the precise modeling of the elementary scattering
process and also on the dimensionality of the system. In the Appendix, we explicitly calculate, as
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type I
type II

thermal layer

spin polarization

Figure 3.3: Symbolic representation of scattering processes within the thermal layer of a degenerate
electron gas. The “test” spin polarization is represented by the large arrow. Type I scattering events
involve small momentum transfer whereas type II scattering events involve large momentum transfer. The
diffusion approximation treats type II processes approximately, which in many cases are less probable. For
instance, the transition probability for Coulomb scattering diverges for small momentum transfer. Thus,
type I processes occur more frequently than type II processes. Within our approximation on-shell scattering
processes can be spin conserving and non-conserving whereas off-shell processes are spin-conserving.

an illustraton, the transition probabilities for electron-electron and electron-impurity scattering in
a [001] quantum well. Similar calculations can be done for bulk. Note, for inelastic scattering the
differential operators act on the moments Cν

i1,...,in(~k) whereas for elastic scattering the moments
are in front of the differential operators.

Equations (3.42) and (3.43) involve partial differential operators of arbitrary order. To obtain
tractable equations, the expansion is in many cases truncated after the second order term (diffu-
sion approximation). As a result, only scattering processes with small momentum transfer (type
I processes) are treated exactly whereas scattering processes with large momentum transfer (type
II processes) are treated approximately (see Fig. 3.3). Because the transition probability for the
(unscreened) Coulomb potential diverges for small momentum transfer, soft Coulomb scattering
events dominate, and the diffusion approximation is expected to describe Coulomb scattering
reasonably well. A similar reasoning applies also to electron-LO-phonon scattering.2

Keeping therefore only the second order terms, we write

J
(0)
B [f, δ ~S] = J

(0),on
B [f, δ ~S] + J

(0),off
B [f, δ ~S]

=





∑

i

Aei(~k)
∂

∂ki
+
∑

ij

Bei
ij(
~k)

∂2

∂ki∂kj



 δ~S(~k, t)

+
∑

ν=ee,ep





∑

i

∂

∂ki
Aν

i (~k) +
∑

ij

∂2

∂ki∂kj
Bν

ij(
~k)



 δ~S(~k, t)

≡ D(~k)δ~S(~k, t) , (3.45)

where the first two terms on the rhs come from elastic scattering processes and the last two terms
encode inelastic scattering events. In Eq. (3.45) we introduced for the first and second moments
(ν = ei, ee, ep),

Aν
i (
~k) =

∑

~q

qiW
ν(~k; ~q) , (3.46)

2The singular behavior of the collision integrals is stronger in three then in two dimensions. Thus, the diffusion
approximation describes perhaps scattering in bulk better than in quantum wells.
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Figure 3.4: Graphical illustration of the collision terms within the diffusion approximation: A “test” spin
polarization scatters off a generalized bath of equilibrated “field” particles (electrons, impurities, and/or
phonons). Whereas spin-flip scattering is elastic (on-shell) within our approximation, spin-conserving
scattering can be on- or off-shell, i.e. the “test” spin polarization can lose/gain energy, because the
“internal degrees” of the bath can absorb/emit energy.

Bν
ij(
~k) =

1

2

∑

~q

qiqjW
ν(~k; ~q) , (3.47)

which have the meaning of ~k-dependent dynamical friction and diffusion coefficients, respectively.
Within the diffusion approximation the spin-conserving (Born) collision integrals are therefore
represented by a Fokker-Planck differential operator (3.45). Each scattering process gives rise to
a particular Fokker-Planck operator, with particular dynamical friction and diffusion coefficients.

In the same spirit, expanding the spin-flip collision integral J
(2)
B [f, δ ~S] up to second order in

the momentum transfer ~q, and using ~g(~k,~k) = 0, gives

J
(2)
B [f, δ ~S] = −R(~k)δ~S(~kt) , (3.48)

with a spin-flip tensor

R(~k) = 4
∑

ν=ei,ee,ep

∑

ij

Bν
ij(
~k)Gij(~k) , (3.49)

given in terms of the total diffusion coefficient and a tensor Gij(~k) which describes the rate of

change of the spin-flip vector ~g(~k,~k′):

Gij(~k) =







Oyy
ij −Oxy

ij 0

−Oyx
ij Oxx

ij 0

0 0 Oxx
ij +Oyy

ij






, (3.50)

with

Oνµ
ij =

[

∂

∂ki
gν
~k~k′

]

~k′=~k

[

∂

∂kj
gµ
~k~k′

]

~k′=~k

. (3.51)

In Fig 3.4 we illustrate the physical content of the diffusion approximation encoded in Eqs.
(3.45) and (3.48): the small “test” spin polarization δ ~S(~k, t) scatters off equilibrated “field” parti-
cles, which, depending on the scattering process, are either electrons, phonons, or impurities. Spin
conserving scattering can be elastic and inelastic, because the “field” particles can absorb/emit
energy, the bath has “internal degrees”. Spin non-conserving scattering, on the other hand, turns
out to be elastic within the diffusion approximation.

We now introduce scaled atomic units and measure energy in units of a scaled atomic Rydberg
R̃0 = R0/s and length in units of a scaled atomic Bohr radius ã0 =

√
sa0, with R̃0ã

2
0 = h̄2/2m0
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and e2 = 2
√
sR̃0ã0, where m0 is the bare electron mass and s is a scale factor chosen to yield R̃0 =

1 meV. Symmetry-adapted coordinates are then a radial coordinate ε = k2 and a generalized angle
variable ω, which, for bulk semiconductors comprises two angles, the polar angle θ and the azimuth
angle φ, and for quantum wells is simply the polar angle φ. Before we express the Fokker-Planck
equation in these symmetry adopted coordinates, we recall that the experimentally measured
quantity is the macroscopic (~k-averaged) spin polarization. Normalizing the macroscopic spin
polarization to Ns, the (small) number of initially spin-polarized electrons and writing the ~k-
integral in symmetry-adapted coordinates, we define a “macroscopic” spin polarization (per spin
polarized electron) ,

δ~S(t) =
1

Ns

∑

~k

δ~S(~k, t)

=
1

(2π)dns

∫ ∞

0
dε

∫

dω J(ε)δ~S(ε, ω, t) , (3.52)

with d the dimension, ns = Ns/L
d the density of initially spin-polarized electrons and J(ε) the

energy dependent part of the Jacobian, which arises from the transformation to the symmetry-
adapted coordinates. Note that due to the normalization, δ ~S(0) is a unit vector in the direction
of the initial spin polarization. For bulk, d = 3, dω = dφdθ sin θ, and J(ε) =

√
ε/2, while for

quantum wells d = 2, dω = dφ, and J(ε) = 1/2. Instead of setting up the Fokker-Planck equation
for δ~S(ε, ω, t) it is more convenient to directly construct the Fokker-Planck equation for

δ~S′(ε, ω, t) =
J(ε)

(2π)dns
δ~S(ε, ω, t) . (3.53)

The differential operator describing spin conserving scattering processes in the Fokker-Planck
equation for δ ~S′ reads in symmetry-adapted coordinates

D(~k) = − ∂

∂ε

ε

τf (ε)
+

∂2

∂ε2
ε2

τd(ε)
− 1

4τ⊥(ε)
L2(ω)

= D(ε) − 1

4τ⊥(ε)
L2(ω) , (3.54)

where the operator L2(ω) denotes the total angular momentum operator in momentum space.
To obtain this generic form for both bulk and quantum wells it is essential to include J(ε) into
the definition of the spin polarization. The off-shell term D(ε) originates from inelastic scattering
events, e.g., due to electron-electron or electron-phonon scattering. The relaxation rates 1/τf (ε)
and 1/τd(ε) denote the rate with which the “test” spin polarization loses energy and the rate
with which the “test” spin polarization diffuses in energy space, respectively. The on-shell term,
describing randomization of the angle variable, is given by the last term on the rhs of Eq. (3.54).
It is proportional to the total on-shell relaxation rate 1/τ⊥(ε) due to both elastic and inelastic
scattering processes.

The rates characterizing the differential operator D(~k) are obtained from a direct calculation
of the coefficients Aν

i (~k) and Bν
ij(
~k) and casting the resulting differential operator D(~k) in the

specific form given in Eq. (3.54). An explicit calculation of the symmetry-adapted form of the
relaxation tensor R(~k), which is defined in terms of the total diffusion coefficient Bij(~k), due
to both elastic and inelastic scattering processes, shows moreover that it can be expressed in
terms of the same scattering rates. Thus, the three scattering rates 1/τf (ε), 1/τd(ε), and 1/τ⊥(ε)

completely specify the two collision integrals J
(0)
B [f, δ ~S] and J

(2)
B [f, δ ~S]. In the Appendix we
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give, as an illustration, explicit expressions for the relaxation rates due to electron-electron and
electron-impurity scattering in a [001] quantum well.

The dimensionless, symmetry-adapted Fokker-Planck equation for δ ~S′, which is the basis for
the calculation of the spin relaxation rates presented in the next subsection, can be therefore
written as

∂

∂t
δ~S′(ε, ω, t) = [D(ε) − 1

4τ⊥(ε)
L2(ω) + i~ΩC · ~L(ω)]δ~S′(ε, ω, t)

+

[

~ΩL + ~ΩIA(ε, ω) + ~Ωg(ε, ω)

]

× δ~S′(ε, ω, t)

− R(ε, ω) δ ~S′(ε, ω, t) . (3.55)

It contains spin relaxation due to motional-narrowing (DP and VG processes) and spin-flip scat-
tering (EY process). The former arises from the combined action of the off- and on-shell spin-
conserving scattering events encoded in the differential operators D(ε) and (1/τ⊥(ω))L2(ω), re-
spectively, and the torque forces due to ~ΩIA(ε, ω) and ~Ωg(ε, ω), while the latter originates from
the spin-flip tensor R(ε, ω). Note that if more than one scattering process is considered, the
relaxation rates characterizing the differential operators and the spin-flip tensor are total relax-
ation rates, due to whatever elastic and inelastic scattering processes are included in the model.
The orbital motion of the electrons, which leads to a quenching of the motional-narrowing spin
relaxation processes, is given by the term i~ΩC · ~L(ω) on the rhs of Eq. (3.55). In the next sub-
section we develop a scheme which separates the fast spin conserving scattering processes from
the slow spin decay causing processes and directly yields the time evolution of the macroscopic
spin polarization.

3.3.4 Multiple Time Scale Analysis

The Fokker-Planck equation (3.55) determines the time evolution of the non-equilibrium spin
polarization on the fast, spin-conserving time scale, where randomization of the angle variables
(direction of the momentum) and energy relaxation and diffusion occurs, and on the long time
scale, where spin non-conserving processes lead to the decay of the spin polarization. The two
time scales are well separated. The fast, spin conserving stage, whose scale is given by the first
term on the rhs of Eq. (3.55) and therefore by the off- and on-shell relaxation times (as well as
the time it takes to complete one cyclotron orbit), terminates in a quasi-stationary state, which
then evolves on the time scales set by the Elliott-Yafet term, the torque forces due to the spin
off-diagonal Hamiltonian matrix elements, and the external magnetic field (Larmor precession).
Experimentally relevant is usually the time evolution on the long time scale. In this subsection
we employ therefore a multiple time scale approach to extract from the Fokker-Planck equation
(3.55) a Bloch equation, which controls the time evolution of the macroscopic (~k-averaged) spin
polarization on the long time scale. To simplify the notation, we suppress the prime. It is
understood that the spin polarization δ ~S(ε, ω, t) contains the factor J(ε)/(2π)dns.

As a preparatory step we first consider that part of the Fokker-Planck equation (3.55), which
is spin-conserving:

∂

∂t
δ~S(ε, ω, t) = [D(ε) − 1

4τ⊥(ε)
L2(ω) + i~ΩC · ~L(ω)]δ~S(ε, ω, t) . (3.56)

To find the stationary solution of Eq. (3.56) we set the lhs to zero, write

δ~Sst(ε, ω) = p(ε)~Ψst(ε, ω) , (3.57)
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Figure 3.5: Schematic illustration of the time evolution of the non-equilibrium spin polarization as given by
the Fokker-Planck equation (3.55). For simplicity we consider ~B = 0. After injection, the spin polarization
relaxes and diffuses in ε−ω space. This initial time evolution is spin-conserving and occurs on a fast time
scale t−1 determined by τi (i = f, d,⊥). The intermediate time scale t0 � t−1 is set by the time it takes an

electron spin to precess about the intrinsic magnetic field ~ΩIA. The decay of the spin polarization occurs
on an even slower time scale t1 � t0. It is this time scale which we eventually want to access. We are not
interested in resolving the fast, spin conserving time evolution. All we need is its quasi-stationary state,
which provides the initial condition for the time evolution on the slow time scale(s).

with p(ε) defined by

D(ε)p(ε) = 0 , (3.58)

and obtain for the auxiliary vector ~Ψst(ε, ω) the differential equation

[D∗(ε) − 1

4τ⊥(ε)
L2(ω) + i~ΩC · ~L(ω)]~Ψst(ε, ω) = 0 , (3.59)

with

D∗(ε) =
ε

τf (ε)

∂

∂ε
+

ε2

τd(ε)

∂2

∂ε2
, (3.60)

the adjoint operator to D(ε). The simplest solution of (3.59) is a constant vector

~Ψst(ε, ω) = ~e , (3.61)

giving rise to a stationary solution

δ~Sst(ε, ω) = p(ε)~e . (3.62)

The particular form of p(ε) does not matter at this point.
We now turn to the complete Fokker-Planck equation (3.55). The spin-conserving stage of

the time evolution, described by the first term on the rhs, occurs on a very fast time scale and
is usually experimentally not resolved. Hence, it is not necessary to explicitly keep track of it.
Instead, it is sufficient to use the final state of the fast, spin-conserving time evolution, i.e. the
stationary solution of the spin conserving part of the Fokker-Planck equation [cf. Eqs. (3.56)–
(3.62)], as an initial state for the time evolution on the slow time scale, where spin decay occurs
(see Fig. 3.5 for an illustration). We write the initial condition therefore as

δ~S(ε, ω, 0) = p(ε)~e , (3.63)
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where ~e is now the direction of the initial spin polarization. This initial condition is general
enough, because neither electrical nor optical spin injection produce anisotropic initial spin po-
larizations. Accordingly, we write for arbitrary times

δ~S(ε, ω, t) = p(ε)~Ψ(ε, ω, t) , (3.64)

where the time-dependent auxiliary vector ~Ψ(ε, ω, t) satisfies now the time-dependent equation

∂

∂t
~Ψ(ε, ω, t) = [D∗(ε) − 1

4τ⊥(ε)
L2(ω) + i~ΩC · ~L(ω)]~Ψ(ε, ω, t)

+
(

~ΩL + ~ΩIA(ε, ω) + ~Ωg(ε, ω)
)

× ~Ψ(ε, ω, t)

− R(ε, ω)~Ψ(ε, ω, t) , (3.65)

with an initial condition ~Ψ(ε, ω, 0) = ~e. Note that Eq. (3.65) is the adjoint Fokker-Planck
equation. The function p(ε) satisfies the homogeneous differential equation (3.58) and is therefore
defined only up to a normalization constant. From the initial condition for the macroscopic spin
polarization, δ ~S(0) = ~e, we conclude that p(ε) has to be normalized according to

∫

dε
∫

dωp(ε) = 1
(recall that we redefined δ ~S such that it contains the factor J(ε)/(2π)dns). Thus, dε

∫

dωp(ε) can
be interpreted as the probability for finding a spin-polarized “test” electron in the energy interval
[ε, ε + dε].

To proceed further we scale each term in Eq. (3.65) to its typical value. In the case of
degenerate electrons the typical values would be the ones at the Fermi energy, whereas for non-
degenerate electrons the typical values could be the ones at the average thermal energy. Denoting
typical values by a caret, we introduce scaled quantities t′ = t/t̂, τ ′f = τf/τ̂f , τ ′d = τd/τ̂d,

τ ′⊥ = τ⊥/τ̂⊥, ~Ω′
IA = ~ΩIAτ̂IA, ~Ω′

g = ~Ωgτ̂g, ~Ω
′
L = ~ΩLτ̂L, R′ = Rτ̂R, and ~Ω′

C = ~ΩC τ̂C . The rescaled

equation for ~Ψ′(ε, ω, t′) becomes (suppressing the arguments of the various functions)

∂

∂t′
~Ψ′ = [

t̂

τ̂f

ε

τ ′f

∂

∂ε
+

t̂

τ̂d

ε2

τ ′d

∂2

∂ε2
− t̂

τ̂⊥

1

4τ ′⊥
L2 +

t̂

τ̂C
i~Ω′

C · ~L]~Ψ′

+
t̂

τ̂L
~Ω′

L × ~Ψ′ +
t̂

τ̂IA

~Ω′
IA × ~Ψ′ +

t̂

τ̂g
~Ω′

g × ~Ψ′ − t̂

τ̂R
R′~Ψ′ . (3.66)

We identify three time scales. A fast time scale given by the spin conserving relaxation times τ̂ i

(i = f, d,⊥) and the time it takes to complete a cyclotron orbit τ̂C , an intermediate time scale
given by the time it takes to complete a precession around the intrinsic magnetic fields (due to
the spin off-diagonal Hamiltonian matrix elements) τ̂IA and τ̂g, and a long time scale, on which
Larmor precession and spin-flip scattering occur, τ̂L and τ̂R, respectively. For representative
experimental set-ups, the typical time scale t̂, on which the spin polarization has to be tracked
(”observation time”), and the three typical intrinsic time scales obey the following ordering:
t̂

τ̂f
, t̂

τ̂d
, t̂

τ̂⊥
, t̂

τ̂C
= O(η−1), t̂

τ̂IA
, t̂

τ̂g
= O(η0), and t̂

τ̂L
, t̂

τ̂R
= O(η1) where we introduced a small

parameter η. Accordingly, we classify each term in Eq. (3.66) by the smallness parameter η.
Suppressing the primes, Eq. (3.66) is rewritten as

∂

∂t
~Ψ =

1

η
[D∗ − 1

4τ⊥
L2 + i~ΩC · ~L]~Ψ + (~ΩIA + ~Ωg) × ~Ψ + η ~ΩL × ~Ψ − η R~Ψ . (3.67)

Equation (3.67) is in a form where fast and slow processes can be clearly identified. The
fast spin-conserving terms and the orbital motion enter in order η−1, the precession around
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the internal magnetic fields enters in order η0, whereas the Larmor precession and the spin-flip
scattering terms appear in order η1. Naturally, taking as much advantage as possible of the
existence of the small parameter η, the first thought is to expand all quantities with respect to
η and apply perturbation theory. The structure of Eq. (3.67) indicates however that regular
perturbation theory will lead to non-uniformity in the long-time regime, i.e. precisely in that
regime, which we are interested in. To obtain the correct long-time behavior of the solution of
Eq. (3.67) a multiple time scale approach is required.

In the spirit of multiple time scale perturbation theory [212], we consider therefore ~Ψ as a
function of three time variables tn = ηnt, n = −1, 0, 1, which are assumed to be independent, and
substitute a second order expansion of the form

~Ψ(ε, ω, t) = ~Ψ(0)(ε, ω, t−1, t0, t1) + η~Ψ(1)(ε, ω, t−1, t0, t1) + η2~Ψ(2)(ε, ω, t−1, t0, t1) (3.68)

into Eq. (3.67), where the time derivative is extended to ∂t = η−1∂t−1 + ∂t0 + η∂t1 . Equating

coefficients of like powers of η yields an hierarchy of equations for the functions ~Ψ(n). Up to O(η)
they read

∂

∂t−1

~Ψ(0) = [D∗ − 1

4τ⊥
L2 + i~ΩC · ~L]~Ψ(0), (3.69)

∂

∂t−1

~Ψ(1) +
∂

∂t0
~Ψ(0) = [D∗ − 1

4τ⊥
L2 + i~ΩC · ~L]~Ψ(1) +

(

~ΩIA + ~Ωg

)

× ~Ψ(0), (3.70)

∂

∂t−1

~Ψ(2)+
∂

∂t0
~Ψ(1) +

∂

∂t1
~Ψ(0) = [D∗ − 1

4τ⊥
L2 + i~ΩC · ~L]~Ψ(2)

+
(

~ΩIA + ~Ωg

)

× ~Ψ(1) + ~ΩL × ~Ψ(0) −R~Ψ(0). (3.71)

For the analysis of this set of equations it is convenient to split ~Ψ(n) into an angle averaged and
a remaining part,

~Ψ(n)(ε, ω, t−1, t0, t1) = ~a(n)(ε, t−1, t0, t1) + δ~a(n)(ε, ω, t−1, t0, t1) , (3.72)

where ~a(n) =< ~Ψ(n) >ω, with an angle average defined by

〈(...)〉ω =

∫

dω(...) (3.73)

and < δ~a(n) >ω= 0 by definition. Since the angle variables are periodic this partitioning is
always possible. From the initial condition, ~Ψ(ε, ω, 0) = ~e, we infer the intitial conditions
~a(n)(ε, 0, 0, 0) = ~eδn,0, and δ~a(n)(ε, ω, 0, 0, 0) = 0. Recalling that the factor J(ε)/(2π)dns is in-

cluded in the definition of δ ~S(ε, ω, t), the macroscopic non-equilibrium spin polarization defined
in Eq. (3.52) can now be rewritten as

δ~S(t) =

∫ ∞

0
dεp(ε)~a(ε, t) = 〈~a(ε, t)〉ε , (3.74)

where we defined an energy average

〈(...)〉ε =

∫ ∞

0
dεp(ε)(...) . (3.75)

Note that the function p(ε), which determines the terminating state of the fast, spin-conserving
time evolution, enters here naturally as a weight function. Formally, the weight function appears
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in our theory because of the ansatz (3.64), which enabled us to switch to the adjoint Fokker-Planck
equation. The expansion of ~Ψ implies an analogous expansion for the macroscopic (~k-averaged)
spin polarization:

δ~S(t) = δ~S(0)(t−1, t0, t1) + ηδ~S(1)(t−1, t0, t1) + η2δ~S(2)(t−1, t0, t1) . (3.76)

We now calculate the leading order contribution δ ~S(0)(t) uniformly valid for all times. As a result,
we will obtain a Bloch equation which determines the long time behavior of the macroscopic spin
polarization.

O(η−1) equation

With the substitution (3.72), the O(η−1) equation (3.69) splits into two independent equations,
one for the angle averaged part and one for the angle dependent part:

∂

∂t−1
~a(0) = D∗~a(0) , (3.77)

∂

∂t−1
δ~a(0) = [D∗ − 1

4τ⊥
L2]δ~a(0) . (3.78)

Solutions of Eqs. (3.77) and (3.78) which are compatible with the two initial conditions, ~a(0)(ε, 0, 0, 0) =
~e and δ~a(0)(ε, 0, 0, 0) = 0, are ~a(0)(ε, t−1, t0, t1) = ~a(0)(t0, t1), with ~a(0)(0, 0) = ~e, and δ~a(0)(ε, ω, t−1, t0, t1) =
0. Using Eqs. (3.74) and (3.76), we find therefore

δ~S(0)(t0, t1) = ~a(0)(t0, t1) , (3.79)

that is, due to our choice of the initial condition, the macroscopic zeroth order spin polarization
is independent of the fast spin conserving time scale t−1 and solely evolves on the long time scales
t0 and t1.

O(η0) equation

To determine the time evolution of the macroscopic spin polarization on the long time scales t0
and t1, we study the O(η0) equation. Substituting (3.72) into Eq. (3.70), the latter splits into
two independent equations:

∂

∂t−1
~a(1) = − ∂

∂t0
~a(0) + D∗~a(1) , (3.80)

∂

∂t−1
δ~a(1) = [D∗ − 1

4τ⊥
L2 + i~ΩC · ~L]δ~a(1) +

(

~ΩIA + ~Ωg

)

× ~a(0) , (3.81)

where we have used δ~a(0) = 0, 〈~ΩIA〉ω = 0, and 〈~Ωg〉ω = 0. Applying the energy average 〈(...)〉ε
on both sides of Eq. (3.80) yields

∂

∂t−1
δ~S(1) = − ∂

∂t0
δ~S(0) − 〈D∗~a(1)〉ε , (3.82)

which, using in the second term partial integration and the definition of p(ε), reduces to

∂

∂t−1
δ~S(1) = − ∂

∂t0
δ~S(0) . (3.83)
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The vanishing of the second term on the rhs of Eq. (3.82) is the result of the spin conservation
of the differential operator D, which in turn is ensured by the identity

d

dε

ε2

τd(ε)

∣

∣

∣

∣

ε=0
=

ε

τf (ε)

∣

∣

∣

∣

ε=0
. (3.84)

It is crucial to note that the rhs of Eq. (3.83) is independent of the fast time t−1, because ~a(0)

is independent of t−1. Integrating Eq. (3.83) with respect to t−1, the rhs therefore gives rise to a
secular term, i.e. a term which is proportional to t−1. As a result, δ ~S(1) can be larger than δ ~S(0)

for sufficiently large times. The expansion (3.76) would be valid only for short times, i.e. the
expansion is non-uniform. Within multiple time scale perturbation theory, secular terms can be
avoided by an appropriate choice of the time evolutions on the various time scales. The secular
term in Eq. (3.83) can be particularly simply removed by forcing the rhs to be zero, which gives
rise to the condition

∫ ∞

0
dεp(ε)

∂

∂t0
~a(0)(t0, t1) = 0 . (3.85)

That is, ~a(0)(t0, t1) = ~a(0)(t1), which, using Eq. (3.79), leads to δ ~S(0)(t1) = ~a(0)(t1), i.e. the time
evolution of the zeroth order macroscopic spin polarization (and therefore the spin decay) occurs
solely on the long time scale t1. Since the rhs of Eq. (3.83) is made to vanish, we also obtain
δ~S(1)(t−1, t0, t1) = δ~S(1)(t0, t1), i.e., δ ~S(1) is independent of the fast time variable t−1. Using the
definition of δ ~S(1), we furthermore conclude that ~a(1)(ε, t−1, t0, t1) = ~a(1)(ε, t0, t1). Both results
we need in the analysis of the O(η1) equations, which is necessary to determine the time evolution
on the remaining time scale t1.

O(η1) equations

To investigate the O(η1) equation (3.71), we substitute (3.72) into (3.71). Averaging over the
angle and energy, we find

∂

∂t−1
δ~S(2) = − ∂

∂t0
δ~S(1) − ∂

∂t1
δ~S(0) + 〈

(

~ΩIA + ~Ωg

)

× δ~a(1)〉ε,ω + ~ΩL × δ~S(0)

− 〈R〉ε,ωδ~S(0) , (3.86)

where we used δ~a(0) = 0, 〈~ΩIA〉ε,ω = 0, 〈~Ωg〉ε,ω = 0, and 〈D∗~a(2)〉ε,ω = 0. The second term on the
rhs of (3.86) contains δ~a(1) which has to be obtained from Eq. (3.81), the angle dependent part
of the O(η0) equation. Before we proceed with the analysis of Eq. (3.86) let us therefore turn to
Eq. (3.81). Integration of Eq. (3.81) with respect to the fast time t−1 produces a secular term,
(~ΩIA + ~Ωg) × ~a(0)t−1, which cannot be removed, because both ~ΩIA + ~Ωg and ~a(0) are finite. A
way to avoid the resulting non-uniformity is to demand

∂

∂t−1
δ~a(1) = 0 , (3.87)

i.e., to enforce δ~a(1)(ε, ω, t−1, t0, t1) = δ~a(1)(ε, ω, t0, t1), which reduces Eq. (3.81) to

[D∗ − 1

4τ⊥
L2 + i~ΩC · ~L]δ~a(1) +

(

~ΩIA + ~Ωg

)

× δ~S(0) = 0 , (3.88)

where we used in the last term ~a(0)(t1) = δ~S(0)(t1). The condition (3.87) is reminiscent of the
ad-hoc quasi-stationarity assumption usually invoked in the calculation of the D’yakonov-Perel’
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relaxation rates. [159] In subsection 3.4.2 we briefly describe a relaxation time approximation,
which is conceptually simpler then the multiple time scale approach but requires, among others,
a quasi-stationarity condition, which has to be incorporated by hand. The multiple time scale
perturbation theory, in contrast, avoids this ad-hoc approach and identifies the time scale on
which this asumption holds.

We now return to Eq. (3.86). Since δ~a(1), δ~S(1), and δ~S(0) are independent of the fast time
variable t−1, the whole rhs of Eq. (3.86) is independent of t−1. Integration with respect to t−1

thus gives rise to a secular term which has to be removed. We force therefore the rhs of Eq.
(3.86) to vanish which can be certainly accomplished if we seperately demand

∂

∂t0
δ~S(1) = 0 , (3.89)

∂

∂t1
δ~S(0) = ~ΩL × δ~S(0) + 〈

(

~ΩIA + ~Ωg

)

× δ~a(1)〉ε,ω − 〈R〉ε,ωδ~S(0) . (3.90)

From the first equation we find

∫ ∞

0
dεp(ε)

∂

∂t0
~a(1)(ε, t0, t1) = 0 , (3.91)

that is ~a(1) is independent of t0, a result which we need below. The second equation is already a
precursor of the Bloch equation for δ ~S(0)(t1). It determines δ ~S(0)(t1) for a given δ~a(1)(t0, t1), is
however not yet of the Bloch-type because, at this point of the calculation, δ~a(1) is still a function
of t1 and t0.

To obtain a closed Bloch-type equation on the time scale t1 alone, we now examine the t0
dependence of δ~a(1)(t0, t1). Towards that end, we consider the angle dependent part of the O(η1)
equation (3.71), which reads

∂

∂t−1
δ~a(2) = [D∗ − 1

4τ⊥
L2 + i~ΩC · ~L]δ~a(2)

+
(

~ΩIA + ~Ωg

)

× ~a(1) +
(

~ΩIA + ~Ωg

)

× δ~a(1) − 〈
(

~ΩIA + ~Ωg

)

× δ~a(1)〉ω

− R~a(0) + 〈R〉ω~a(0) − ∂

∂t0
δ~a(1) . (3.92)

Except for the first term, all terms on the rhs are independent of t−1, and therefore give rise to
secular terms. To remove the secular terms, we set the undesired terms on the rhs to zero

∂

∂t0
δ~a(1) =

(

~ΩIA + ~Ωg

)

× δ~a(1) − 〈
(

~ΩIA + ~Ωg

)

× δ~a(1)〉ω

− [R − 〈R〉ω]~a(0) +
(

~ΩIA + ~Ωg

)

× ~a(1) . (3.93)

The last two terms on the rhs of this equation are independent of t0 and therefore again give rise
to a secular term if Eq. (3.93) is integrated with respect to t0. In general, the last two terms
are finite. Thus, to avoid non-uniformity we demand that δ~a(1) is independent of t0, that is,
we enforce δ~a(1)(ε, ω, t0, t1) = δ~a(1)(ε, ω, t1). With this constraint, Eq. (3.93) could be used to
determine ~a(1)(ε, t1) and eventually δS(1)(t1). This is however beyond the required accuracy.

Because δ~a(1) is independent of t0, Eq. (3.90) is in fact a Bloch equation on the time scale t1
alone. The function δ~a(1)(ε, ω, t1) satisfies Eq. (3.88), which, through δ ~S(0)(t1), contains t1 only
as a parameter. Therefore, the function δ~a(1)(ε, ω, t1) instantaneously adjusts to the function
δ~S(0)(t1), which, in this sense, acts like a “slave field” for δ~a(1)(ε, ω, t1).
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To make the equations determining the decay of the macroscopic spin polarization explicit,
we recall tn = ηnt and go back to the original, unscaled time variable and functions. As a result
Eq. (3.90) becomes a Bloch equation for the macroscopic spin polarization,

∂

∂t
δ~S(0)(t) = ~ΩL × δ~S(0)(t) − [ΓEY + ΓMN]δ~S(0)(t) , (3.94)

with initial condition δ ~S(0) = ~e. The Elliott-Yafet and motional-narrowing spin relaxation tensors
are given by

ΓEY = 〈R〉ε,ω, (3.95)

ΓMNδ~S
(0)(t) = −〈

(

~ΩIA + ~Ωg

)

× δ~a(1)〉ε,ω , (3.96)

respectively, and δ~a(1) is obtained from Eq. (3.88). Equations (3.94) – (3.96) are the main result
of this section. They control the time evolution of the macroscopic spin polarization on the long
time scale, where spin relaxation, i.e., decay, occurs. Equation (3.96) is an implicit definition
of the spin relaxation tensor ΓMN. The explicit form of ΓMN can be obtained by inserting the
solution of Eq. (3.88), which is always linear in δ ~S(0)(t), and performing the angle and energy
averages.

We now present the details of this calculation. To derive an explicit expression for ΓNM we
have to solve Eq. (3.88), which is a system of three differential equations for the three components
of the fluctuation vector δ~a(1). It can be decoupled by expanding the angle dependent part of
δ~a(1) in terms of a complete set of functions Yλ, which are the solution of the following eigenvalue
problem,

[− 1

4τ⊥(ε)
L2 + i~ΩC · ~L]Yλ(ω) +

1

τλ(ε)
Yλ(ω) = 0, (3.97)

where 1/τλ(ε) is the eigenvalue. Notice that the energy ε enters the eigenvalue problem only as
a parameter through the on-shell relaxation time τ⊥(ε). For bulk semiconductors, the functions
Yλ are the spherical harmonics (λ = l,m), whereas for a quantum well the functions Yλ are the
trigonometric functions (λ = m). The crucial point is that both ~ΩIA and ~Ωg can be expanded in
terms of Yλ. As a result, in each λ channel we can introduce a function rλ(ε) which relates the λ
component of δ~a(1) to the λ component of the vector (~ΩIA + ~Ωg) × δ~S(0)(t). The function rλ(ε)
satisfy then a scalar differential equations.

Let us be more specific. Separating the energy and angle dependences of the vectors ~ΩIA and
~Ωg, we first write

~ΩIA(ε, ω) =
1

τIA(ε)
~κIA(ω), (3.98)

~Ωg(ε, ω) =
1

τg(ε)
~κg(ω), (3.99)

where we defined energy dependent precession rates 1/τIA(ε) and 1/τg(ε) which depend on the
dimension and are specified below.

We then expand the angle dependent parts in terms of Yλ(ω), κi
IA(ω) =

∑

λ C
i
λYλ(ω) and

κi
g(ω) =

∑

λD
i
λYλ(λ), with i = x, y, z, and rewrite the torque force terms in terms of matrices:

~ΩIA(ε, ω) × δ~S(0)(t) =
1

τIA(ε)

∑

λ







0 −Cz
λ Cy

λ

Cz
λ 0 −Cx

λ

−Cy
λ Cx

λ 0






δ~S(0)(t)Yλ(ω)

≡ 1

τIA(ε)

∑

λ

Cλδ~S
(0)(t)Yλ(ω), (3.100)
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and

~Ωg(ε, ω) × δ~S(0)(t) =
1

τg(ε)

∑

λ







0 −Dz
λ Dy

λ

Dz
λ 0 −Dx

λ

−Dy
λ Dx

λ 0






δ~S(0)(t)Yλ(ω)

≡ 1

τg(ε)

∑

λ

Dλδ~S
(0)(t)Yλ(ω), (3.101)

where we defined the matrices Cλ and Dλ, containing the expansion coefficients C i
λ and Di

λ, re-
spectively. In the following we assume for simplicity that the matrices Cλ and Dλ are orthogonal,
that is, for a given λ either Cλ or Dλ is finite. This is, e.g., the case for isotropic III-V bulk
semiconductors, where an explicit calculation gives Clm nonzero only for l = 3, whereas Dlm

contributes only for l = 0, 2.
With the above definitions, the solution of Eq. (3.88) can be written as

δ~a(1)(ε, ω, t) = Σλrλ(ε)[Cλ + Dλ]δ~S(0)(t)Yλ(ω), (3.102)

with rλ(ε) satisfying an inhomogeneous differential equation

[D∗(ε) − 1

τλ(ε)
]rλ(ε) + hλ(ε) = 0, (3.103)

where the inhomogeneity hλ(ε) = (1/τIA(ε))δλ∈ΛIA
+ (1/τg(ε))δλ∈Λg . Here, we introduced a

generalized Kronecker delta, δλ∈Λ, which is 1 for λ ∈ Λ and zero otherwise. The sets ΛIA and
Λg contain the λ’s contributing to the expansion of ~ΩIA and ~Ωg, respectively. An alternative
differential equation,

[D(ε) − 1

τλ(ε)
]p(ε)rλ(ε) + p(ε)hλ(ε) = 0, (3.104)

can be obtained by multiplying Eq. (3.103) from the left with p(ε)rλ(ε), integrating over ε, and
using condition (3.84). This form we need for a comparison with the relaxation time approxima-
tion to be discussed in subsection 3.4.2.

Using (3.102) in (3.96), performing the average over ω, and taking the orthogonolity of Cλ

and Dλ into account, we finally obtain

ΓMN = ΓDP + ΓVG , (3.105)

with the DP and VG spin relaxation tensors explicitly given by

ΓDP =
∑

λλ̄

(−CλCλ̄)〈 rλ̄(ε)

τIA(ε)
〉ε〈YλYλ̄〉ω (3.106)

and

ΓVG =
∑

λλ̄

(−DλDλ̄)〈rλ̄(ε)

τg(ε)
〉ε〈YλYλ̄〉ω , (3.107)

respectively. To perform the angle averages it is necessary to specify the orthonormality of
the functions Yλ(ω). This depends on dimension and the particular experimental set-up (e.g.,
direction of the magnetic field). In the following subsection we apply therefore our approach
separately to specific bulk and quantum well situations.
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Equations (3.106) and (3.107) reduce the calculation of the DP and VG spin relaxation tensors
to quadratures. In contrast to Eq. (3.95), which defines the EY spin relaxation tensor in terms of
a quadrature with an explicitly known integrand, the integrands in Eqs. (3.106) and (3.107) are
not explicitly known. They contain the function rλ(ω), which is the solution of a scalar differential
equation (3.103), which cannot be solved analytically. Sometimes it is however sufficient to treat
all scattering processes elastically. Within the elastic approximation, the differential operator
D∗(ε) is neglected and Eq. (3.103) reduces to an algebraic equation, which is readily solved to
yield rλ(ε) = τλ(ε)hλ(ε). As a result, the integrand of the quadratures in Eqs. (3.106) and
(3.107) is now also explicitly known. In some cases all the integrands can be even obtained
analytically. The quadratures can then be performed by saddle point techniques, exploiting the
peaked structure of the integrands, and analytical expressions for the EY, DP, and VG spin
relaxation tensors can be derived.

The macroscopic spin relaxation tensor contains the EY process and the motional-narrowing
(DP and VG) processes. Due to the different angle dependences of the two motional-narrowing
spin relaxation processes, Eq. (3.105) [cf. Eq. (3.96)] splits for isotropic semiconductors into two
separate terms, ΓDP and ΓVG. Accordingly, for isotropic semiconductors, a Matthiessen-type
rule holds for the total spin relaxation tensor, Γ = ΓEY + ΓDP + ΓVG. [11] The quenching of the
motional-narrowing processes due to the orbital motion [11,160] is contained in Eq. (3.97) through
the term proportional to ~ΩC · ~L. The on- and off-shell relaxation rates appearing in Eq. (3.103)
are total relaxation rates due to whatever scattering processes are included. A Matthiessen rule
holds separately for the on- and off-shell rates. The energy average 〈(...)〉ε is defined in Eq. (3.75).
Most importantly, it contains a weight function p(ε) defined as the solution of Eq. (3.58). This
function describes the energy dependence of the quasi-stationary spin polarization which appears
on the short time scale because of fast, spin-conserving inelastic scattering processes, i.e. because
of energy relaxation and diffusion. Once the quasi-stationary spin polarization is established, it
slowly decays on the long time scale set by the spin non-conserving terms in the Fokker-Planck
equation.

3.4 Applications

The semiclassical kinetic theory of electron spin relaxation, which we developed in the previous
section, is tailor-made for the description of the final stages of spin relaxation, where the spin
subsystems are not yet balanced, but each spin subsystem is equilibrated. This stage of the time
evolution is optically accessible.

When an n-type doped semiconductor is photoexcited with a short circularly polarized optical
pulse tuned to an optical frequency just above the energy gap, electrons and holes are generated.
Because of the spin dependent optical selection rules, the photogenerated electrons will be prefer-
entially spin polarized with quantization axis along the optical propagation direction. The holes
will rapidly scatter and lose any information concerning their initial quasi-spin variable. Elec-
trons and holes recombine on a time scale that is short compared to electron spin relaxation.
After electron-hole recombination has been completed, there will be an electron density equal to
the original electron density, prior to photoexcitation, that is preferentially spin polarized with
quantization axis along the optical propagation direction. The exact degree of spin polarization
depends on the energy of the optical pulse, and is difficult to calibrate precisely. Our formalism
is based on a linearization procedure and therefore only applicable if the initial spin polariza-
tion is small. Spin-conserving scattering processes establish a quasi-stationary spin polarization
(→ δ~Sst) on a fast time scale (→ τi, i = f, d,⊥). The spin decay on the long time scale (→ Γ)
can then be probed by polarization sensitive optical transmission, reflection, and emission.
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3.4.1 Spin Relaxation in Quantum Well Structures [9]

We consider a quantum well at low enough temperatures, where electron-impurity and electron-
electron scattering dominate. We are here particularly interested in the effects of Pauli blocking
and inelasticity. For illustration, we focus therefore only on the DP process, which, for small
to moderate magnetic fields, is usually the dominant spin relaxation process. Moreover, if the
magnetic field is small enough, the time τ̂C it takes to complete a cyclotron orbit is much longer
then any of the intrinsic scattering times τ̂i (i = f, d,⊥), and the quenching effect of the magnetic
field can be ignored.

We consider a symmetric GaAs quantum well, grown in the [001] direction, which is also
the quantization axis for the electron spin. Due to the assumed structural symmetry, there is
only bulk inversion asymmetry giving rise to DP spin relaxation. [191] As in the bulk case, we
treat the two states at the conduction band minimum explicitly and include a large set of states
perturbatively, up to third order, to include the effect of bulk inversion asymmetry. For energies
close to the band minimum, the Hamiltonian for the quantum well can be cast into the form (3.1).
The spin off-diagonal term in the quantum well Hamiltonian is the bulk spin off-diagonal term
averaged over the envelope function of the conduction subband. Assuming for simplicity infinite
confinement and restricting the calculation to the lowest conduction subband, we find (neglecting
cubic terms in ~k)

h̄~ΩQW
IA (ε, φ) = 2δ0

√
ε(
π

L
)2







− cosφ
sinφ

0







=
1

τIA(ε)
~κIA(φ) , (3.108)

where we have defined a precession rate 1/τIA(ε) = CQW
IA

√
ε with CQW

IA = 2δ0(π/L)2.

Since we are only interested in the DP spin relaxation tensor, we neglect the torque force due
to ~Ωg. Because we furthermore assume small magnetic fields, we also ignore the orbital motion
of the electrons. In this particular case, where only one spin relaxation channel is considered,
it is not necessary to formally expand δ~a(1)(ε, φ, t) in terms of the eigenfunctions of Eq. (3.97),
specialized to a quantum well. Instead, a simple separation ansatz,

δ~a(1)(ε, φ, t) = r(ε)~κIA(φ) × ~S(0)(t) , (3.109)

suffices to decouble Eq. (3.88) and reduce it to the scalar differential equation,

[D∗ − 1

4τ⊥(ε)
]r(ε) +

1

τIA(ε)
= 0 , (3.110)

which determines the scalar function r(ε). Because the differential operator D∗ accounts for
inelastic scattering, we have to conclude that even on the long time scale, where the spin po-
larization decays, inelasticity cannot be ignored. Thus, inelastic scattering processes not only
determine the initial condition for the decay stage but they directly affect the time evolution (of
the macroscopic spin polarization) in the decay stage. Multiplying Eq. (3.110) from the left by
p(ε)r(ε), integrating the resulting equation over ε, and using condition (3.84) yields an equivalent
differential equation,

[D − 1

4τ⊥(ε)
]p(ε)r(ε) +

p(ε)

τIA(ε)
= 0 , (3.111)
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which can be also used to determine r(ε). In Ref. [10], we adopted a less rigorous approach, based
on a relaxation time approximation, to calculate spin lifetimes in GaAs quantum wells (and bulk
GaAs). Equation (3.111) is useful for a comparison of the multiple time scale approach presented
here and the relaxation time approach discussed in Ref. [10]. In Sect. 3.4.2 we discuss this point
in more detail.

Inserting Eq. (3.109) into (3.96), ignoring the ~Ωg term, and performing the angle and energy
averages finally yields for the DP spin relaxation tensor

ΓDP =
1

τDP







1 0 0
0 1 0
0 0 2






, (3.112)

with the DP spin relaxation rate given by

1

τDP
= π〈 r

τIA
〉ε , (3.113)

where the energy average is defined in Eq. (3.75). To determine the function p(ε), we integrate
Eq. (3.58), which gives

[

−v(ε) +
d

dε
w(ε)

]

p(ε) = 0 , (3.114)

where we used again condition (3.84) and introduced the dynamical friction and diffusion coef-
ficients in ε-space, v(ε) = ε/τf (ε) and w(ε) = ε2/τd(ε), respectively. Integrating once more, we
obtain

p(ε) = p(0)e

∫ ε

0
dε′

v(ε′)−w′(ε′)

w(ε′) , (3.115)

with w′(ε) = dw(ε)/dε and a normalization constant p(0), which we fix according to

∫ 2π

0
dφ

∫ ∞

0
dεp(ε) = 1 . (3.116)

Note, because of condition (3.84), the integral in Eq. (3.115) is zero for ε → 0. That is, p(ε) is
well-defined for ε→ 0.

The Bloch equation (3.94) for the macroscopic spin polarization has to be solved with the
spin relaxation tensor (3.112) and taking the particular geometry of the experimental set-up into
account. Here, we consider the case of Kerr or Faraday rotation experiments, where the small
magnetic field, which causes the spin precession, is along the x-axis. The propagation direction
of the pump and probe pulses is assumed to be perpendicular to the quantum well plane, i.e.,
parallel to the z-axis (growth axis). The initial spin polarization is therefore along the z-axis,
i.e. ~e = (0, 0, 1)T , and the probe pulse monitors the decay of a spin polarization which precesses
in the yz-plane. Note that the spin decay in the yz-plane plane is not isotropic (Γyy 6= Γzz).
Assuming τDP � 1/ΩL, the solution of the Bloch equation is

δ~S(t) =







0
− sinΩLt
cos ΩLt






e−Γt, (3.117)

where the decay rate of the spin polarization is given by the arithmetic mean of the decay rates
in y- and in z-direction: Γ = (Γyy + Γzz)/2 = 3/(2τDP).
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Figure 3.6: Distribution function (for the equilibrated state at t → ∞), dynamical friction coefficient,
dynamical diffusion coefficient, and angle randomization coefficient (anticlockwise, starting from the upper
left panel) for a modulation doped quantum well at an electron density n = 4×109cm−2 and T = 10K (non-
degenerate regime, chemical potential µ ≈ −1.5meV). The coefficients are calculated for electron-electron
scattering only. For the purpose of the plot we switched back to physical units.

The results presented below are, if not stated otherwise, for a L = 25nm GaAs quantum

well. The parameter needed to specify h̄~ΩQW
IA (~k) is δ0 = 0.06h̄3/

√

(2m∗)3εg. [164] The remaining

parameters, such as the effective CB electron mass or the static dielectric constant εb (needed
for the Coulomb matrix element) can be found in standard data bases. [213] Numerically, we
first calculate v(ε) = ε/τf (ε), w(ε) = ε2/τd(ε), which define the differential operator D, and
the on-shell rate u(ε) = 1/4τ⊥(ε) taking electron-electron and electron-impurity scattering into
account (see Appendix). We then determine p(ε) from Eqs. (3.115) and (3.116). Finally, we solve
the differential equation (3.111) for r(ε) numerically and obtain the DP relaxation rate 1/τDP by
numerically integrating Eq. (3.113).

In Figs. 3.6 and 3.7 we show, for T = 10K, the functions v(ε) = ε/τf (ε), w(ε) = ε2/τd(ε), and
u(ε) = 1/4τ⊥(ε) for a modulation doped quantum well with electron density n = 4 × 109cm−2

(non-degenerate electrons, chemical potential µ ≈ −1.5meV) and n = 4 × 1011cm−2 (degenerate
electrons, chemical potential µ ≈ 14.3meV), respectively. We take only electron-electron scatter-
ing into account, because for a modulation doped quantum well electron-impurity scattering is
negligible. The physical content of the functions v(ε) and w(ε) is that of dynamical friction and
diffusion coefficients (in ε-space) for the “test” spin polarization resulting from the scattering be-
tween the spin-polarized “test” electrons and the equilibrated “field” electrons. The function u(ε)
denotes the on-shell scattering rate arising from the “test” electron’s elastic scattering off “field”
electrons. It randomizes the angle φ; hence u(ε) can be interpreted as an angle randomization
coefficient.

In Figs. 3.6 and 3.7 we also show the electron distribution functions which characterize the
equilibrated state at t → ∞. Because of our assumption that only a small portion of the total
number of electrons initially contributed to the “test” spin polarization (i.e. δf(~k, t) � f(~k)), the
equilibrium distribution functions f(~k) are used to determine the friction, diffusion, and angle
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Figure 3.7: Same as in Fig. 3.6, except that the electron density is now n = 4 × 1011cm−2 (degenerate
regime, chemical potential µ ≈ 14.3meV).

randomization coefficients (see Section 3.3.2 and the Appendix). In other words, we approximated
at t < ∞ the distributions of the friction and diffusion causing spin-balanced “field” electrons
by the distributions of the equilibrated electrons at t → ∞, despite the fact that at t < ∞ of
course a small number of electrons is still out of equilibrium and contributes to the finite spin
polarization. Obviously, this is only permissible close enough to equilibrium.

Inelastic scattering encoded in v(ε) = ε/τf (ε) and w(ε) = ε2/τd(ε) gives rise to spin-conserving

energy relaxation and diffusion, which in turn yields a quasi-stationary spin polarization δ ~Sst(ε, φ) =
p(ε)~e, towards which any initial spin polarization relaxes very quickly without losing spins. The
time scale on which this spin-conserving relaxation takes place is set by the relaxation times τ i(ε),
i = f, d,⊥ which, for fixed temperature and density, can be extracted from plots like the ones
shown in Fig. 3.6 and 3.7. Typically, the spin conserving relaxation takes place on the sub-ps
timescale. That the spin-conserving part of the Fokker-Planck equation (3.55) has the physically
expected stationary solution is guaranteed by the particular form of the functions v(ε) and w(ε).
This can be most clearly seen in the degenerate case depicted in Fig. 3.7. The dynamical friction
v(ε) changes sign at the chemical potential µ, that is, spin-polarized “test” electrons with an
energy above (below) the chemical potential are pushed downwards (upwards) in energy, that is,
the “test” electrons feel a drag towards the chemical potential. The dynamical diffusion coeffi-
cient on the other hand is always finite for ε > 0, as it should. Its value at the chemical potential
essentially reflects the width of the quasi-stationary spin polarization.

In Figure 3.8 we show p(ε) for T = 10K and three densities: n = 4 × 109cm−2, n = 4 ×
1011cm−2, and n = 4 × 1012cm−2. In the inset we again depict the corresponding distribution
functions for the electrons which characterize the equilibrated state at t → ∞. At very low
densities, where the electrons are non-degenerate, p(ε) is centered around ε = 0, while at high
densities, where the electrons are degenerate, p(ε) is centered around the Fermi energy for the
electrons. Note, however, that p(ε) describes the spin polarization at t = 0 while f(ε) is the
equilibrium distribution of the electrons at t→ ∞.

We now turn to the numerical results for the DP spin lifetime τDP . Figure 3.9 shows τDP
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Figure 3.8: Weight function for a modulation doped quantum well at T = 10K and three electron densities
n = 4 × 109cm−2 (solid line), n = 4 × 1011cm−2 (dotted line), n = 1012cm−2 (dashed line), taking only
electron-electron scattering into account. The inset shows the corresponding electron distribution functions
in the equilibrated state at t→ ∞.

as a function of electron density for a modulation doped quantum well at three temperatures
T = 10K, 20K, and 30K. Since in a modulation doped quantum well electron-impurity scattering
is negligible, we take only electron-electron scattering into account. For fixed temperature, the
spin lifetime first increases with electron density, reaches a maximum, and then decreases again.
The non-monotonic density dependence of the spin lifetime follows the density dependence of
the electron-electron scattering rate. At low densities, the scattering rate is small because of
lack of scattering partners, while at high densities the scattering rate is suppressed because of
efficient Pauli blocking. At intermediate densities, where the cross-over from non-degenerate to
degenerate electrons occurs, the electron-electron scattering rate, and thus the DP spin lifetime,
is maximal. The position of the maximum shifts with decreasing temperature to lower densities
because the density, where the cross-over from a non-degenerate to a degenerate electron gas takes
place, decreases with temperature. The relaxation time of photo-currents in optically pumped
semiconductors shows a similar non-monotonic density dependence. [214]

For a fixed electron density, the DP spin lifetime decreases with temperature in the low density
regime and increases with temperature in the high density regime. The latter is because of the
temperature induced reduction of the Pauli blocking, giving rise to an increasing electron-electron
scattering rate and therefore to an increasing DP spin lifetime. In the low density regime, on
the other hand, increasing temperature broadens the electron distribution function, i.e. electrons
occupy states higher up in the band. The average thermal energy increases therefore and the spin
decay occurs preferentially from states higher up in the band, where the torque force induced by
the bulk inversion asymmetry is larger. As a consequence, the DP spin lifetime decreases with
temperature in the low density regime.

In Fig. 3.9 we also plot experimental data for T = 10K from Ref. [181]. For electron densities
above n = 5 × 1010cm−2 the agreement between theory and experiment is quite good, given the
fact that our calculation is based on an idealized quantum well with infinitely high confinement
potential. In this density regime, we expect our results to even underestimate the spin lifetimes,
because the model for the electronic structure of the quantum well most probably overestimates
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Figure 3.9: D’yakonov-Perel’ spin lifetime due to electron-electron scattering for a 25nm modulation doped
quantum well as a function of electron density at three temperatures T = 10K, T = 20K, and T = 30K.
The solid dots are experimental data at T = 10K from Ref. [181].

h̄~ΩQW
IA . Indeed, the constant defining the magnitude of the splitting of the conduction subband

CQW
IA ∼ (π/L)2 ∼ E∞

1 , with E∞
1 the confinement energy of the lowest conduction subband. For

a finite confinement potential, E1 is smaller than E∞
1 = h̄2π2/2m∗L2, giving rise to a smaller

splitting and, consequently, to a larger τDP . To obtain in this density regime better agreement
between experimentally measured and theoretically calculated spin lifetimes an improved elec-
tronic structure calculation is clearly necessary. At lower densities, on the other hand, electrons
are most likely localized to donors (at T = 10K thermal ionization is negligibly small) and our
theory, which is based on a band picture, does not apply.

In quantum wells which are not modulation doped, electron-impurity scattering due to donors
and acceptors (in compensated samples) provides an additional, very efficient scattering process.
The DP spin lifetime increases with scattering rate. As a result, we expect the spin lifetimes
in quantum wells that are not modulation doped to be substantially longer than in modulation
doped quantum wells. In compensated samples the density of ionized impurities can be larger then
the density of electrons. Within the Born approximation, the transition probability for scattering
on positively and negatively charged impurities is the same. Thus, calculating the Born collision
integral due to electron-impurity scattering with an impurity sheet density ni = xn is a simple
way to model compensated quantum wells. In Fig. 3.10 we plot the electron density dependence
of the DP spin lifetime at T = 40K for x = 0 (modulation doped), x = 1 (uncompensated
quantum well with equal impurity and electron density), and x = 4 (compensated quantum well
with impurity (donor and acceptor) density four times the electron density). As expected, the
spin lifetimes increase with x for all electron densities. The increase is however not uniform, with
the largest increase taking place at high electron densities, where Pauli blocking very effectively
suppressed the DP spin lifetime in the modulation doped quantum well. The electron-impurity
scattering rate is not affected by Pauli blocking and leads therefore to a substantial enhancement
of the DP spin lifetime at high doping levels.

For a fixed density the character of the electron gas also changes with temperature. In
particular, increasing temperature pushes the electron gas into the non-degenerate regime. For
some temperature, the cross-over from a degenerate to a non-degenerate electron gas occurs,
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Figure 3.10: D’yakonov-Perel’ spin lifetime for a 25nm quantum well at T = 40K and three values of ion-
ized (donor and acceptor) impurity concentrations: no impurities (x = 0), ionized impurity concentration
equal to the electron density (x = 1), and ionized impurity concentration equal to four times the electron
density (x = 4). For x = 0, only electron-electron scattering contributes to the spin lifetime, whereas for
x 6= 0 both electron-electron and electron-impurity scattering determine the spin lifetime.

electron-electron scattering is particularly strong, and we expect spin lifetimes to be enhanced.
This effect is demonstrated in Fig. 3.11, where we plot for an electron density n = 3 × 1010cm−2

the temperature dependence of the spin lifetime for x = 0, 1, and 4. In the modulation doped
case (x = 0) the enhancement of the spin lifetime in the temperature range where the cross-over
from degenerate to non-degenerate takes place can be most clearly seen. For finite x, the spin
lifetimes are for all temperatures longer than for x = 0. The enhancement is again not uniform.
At high temperatures it is very small. While at low temperatures it is very large, because in
that range the Pauli blocking leads to a strong suppression of the DP spin relaxation rate in
modulation doped quantum wells. In fact, the spin lifetimes at low temperatures saturate by a
value set by the electron-impurity scattering rate. The maximum in the spin lifetime is therefore
less pronounced (or even disappears completely) in quantum wells that are not modulation doped.

In Fig. 3.12 we finally compare for a 10nm GaAs quantum well with an electron density
n = 1.86× 1011cm−2 the theoretically obtained temperature dependence of the D’yakonov-Perel’
spin lifetimes for x = 0 and x = 1 with the experimentally measured temperature dependence of
the D’yakonov-Perel’ spin lifetime. [183] The agreement between the experimental data points and
the theoretical results for x = 0 is quite reasonable, suggesting that electron-electron scattering is
the main source of electron spin relaxation in these samples. The remaining discrepancy between
the theoretical and experimental results is most probably because of the idealistic quantum well
model on which our calculation is based. The description of scattering processes within the
diffusion approximation is less critical in our opinion because a calculation based on the full
collision integral deviates the same order of magnitude from the experimental data. [198] We
expect therefore that a more accurate description of the electronic structure of the quantum well
is required to achieve better agreement between experiment and theory.

The experimental results seem to suggest that, for this particular electron density and exper-
imental set-up, the D’yakonov-Perel’ spin lifetime τDP grows monotonically with temperature, in
contrast to the theoretically predicted non-monotonic behavior with a maximum at T=100K. The
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Figure 3.11: D’yakonov-Perel’ spin lifetime for a 25nm quantum well as a function of temperature at an
electron density n = 3×1010cm−2 and three values of ionized (donor and acceptor) impurity concentrations:
no impurities (x = 0), ionized impurity concentration equal to the electron density (x = 1), and ionized
impurity concentration equal to four times the electron density (x = 4). As in Fig. 3.10, for x = 0, only
electron-electron scattering contributes to the spin lifetime, whereas for x 6= 0 both electron-electron and
electron-impurity scattering determine the spin lifetime.

apparent inconsistency is perhaps due to the neglect of phonons in the theoretical modeling. The
maximum of τDP is a consequence of electron-electron scattering. Additional scattering processes
destroy the maximum. For instance, electron-impurity scattering increases the spin lifetimes at
low temperatures, resulting in a more or less monotonically decreasing spin lifetime (x = 1 curve
in Fig. 3.12). The samples in Ref. [183] are high-quality quantum wells, where electron-impurity
scattering is negligible. The electron density n = 1.86 × 1011cm−2 is however rather high. As a
result, the temperature, at which τDP is expected to be maximal, falls in a temperature range,
where electron-phonon scattering cannot be ignored. In fact, we expect a calculation, which
takes electron-electron and electron-phonon scattering into account, to produce a monotonically
increasing τDP , as experimentally observed. At temperatures below 100K, we expect phonons to
be frozen out and not much to change, that is, electron-electron scacttering would dominate and
τDP would be short because of the Pauli-blocking of electron-electron scattering. With increasing
temperature we expect τDP to first increase because of a weakening of the Pauli-blocking. Then,
at temperatures around and above 100K, that is, in the temperature range where we expect
electron-electron scattering alone to produce a maximal τDP , electron-phonon scattering would
gradually take over. Because the electron-phonon scattering rate would increase with tempera-
ture, we expect τDP to grow continuously. As a result, τDP would be a monotonically growing
function of temperature in accordance with the experimental finding.

In this subsection we illustrated our semiclassical kinetic theory of spin relaxation by calculat-
ing the DP spin lifetime for an (idealized) quantum well, at temperatures and electron densities,
where electron-electron and electron-impurity scattering dominate. Electron-electron scattering
has been chosen to illustrate the effects of inelasticity and Pauli blocking. Electron spin life-
times due to electron-electron scattering have been also calculated in Refs. [195, 197, 198, 215],
using however different approaches and focusing mostly on different aspects. In particular, the
non-monotonous temperature and density dependence has not been addressed until quite re-
cently. [9, 10, 198] In modulation doped quantum wells, spin lifetimes turn out to be particularly
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Figure 3.12: D’yakonov-Perel’ spin lifetime for a 10nm GaAs quantum well as a function of temperature
at an electron density n = 1.86×1011cm−2. The solid and dashed lines are for x = 0 (no ionized impurities)
and x = 1 (ionized impurity concentration equal to the electron density). The solid dots are experimental
data form Ref. [183].

long for electron densities and temperatures, where the cross-over from the non-degenerate to
degenerate regime occurs. In this regime, many-body effects beyond the Born approximation are
most probably important and should be included in a more quantitative calculation of the spin
relaxation times. We expect however our main conclusions to be independent of the particular
modeling of the Coulomb interaction.

3.4.2 Spin Relaxation in Bulk Semiconductors [10, 11]

As a further illustration of our approach, we discuss in this subsection the magnetic field de-
pendence of the spin relaxation rates in bulk GaAs. This was historically our first application
of the Fokker-Planck equation for the non-equilibrium spin polarization in non-magnetic semi-
conductors. [11] To separate fast, spin-conserving from slow, spin non-conserving processes we
did not yet employ the multiple time analysis. Instead, we used a relaxation time approxima-
tion, which is conceptually simpler, but requires a number of ad-hoc assumptions. Although
the multiple time scale approach is more general and rigorous, the final expressions for the spin
relaxation tensors are quite similar to the ones obtained from the relaxation time approximation
(see below). The main difference is that the weight function p(ε) defining the energy quadratures
cannot be calculated within the relaxation time approximation, but has to be chosen by physical
considerations. A plausible choice is to take p(ε) ∼ −N(ε)∂εf(ε), with N(ε) the density of states,
and normalize it accordingly. The numerical results presented in this subsection were obtained
with this particular weight function. [10, 11]

Because the numerical results are based on the relaxation time approximation, a short detour,
describing the derivation of the spin relaxation tensors within the relaxation time approximation,
is in order. In the spirit of Ref. [159], we employ a (regular) perturbative approach which treats
all terms due to inversion asymmetry as small. We consider the torque forces due to ~ΩIA and
~Ωg, respectively, as O(1) terms, and the term involving the spin-flip tensor R as an O(2) term.

Results are valid for |~ΩIA + ~Ωg|τ∗ < 1 and |R|τ∗ < 1, where τ∗ denotes a representative value of
any one of the scattering times τi (i = f, d,⊥) and |..| is a vector or tensor norm.
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The starting point of the relaxation time approximation is a product ansatz for the non-
equilibrium spin polarization,

δ~S(ε, ω, t) = p(ε)~Ψ(ε, ω, t), (3.118)

where the function p(ε) is normalized according to
∫

dεdωp(ε) = 1. At the end of the derivation
we shall see that the function p(ε) defines a weighted energy average as in the case of the multiple
time scale approach. To construct a relaxation time approximation on the scale of the spin
relaxation time τs, we write

~Ψ(ε, ω, t) = ~Ψ(0)(t) + ~Ψ(1)(ε, ω, t) , (3.119)

and require that, on the time scale τs, 〈~ψ(1)〉ω = 0, with 〈(...)〉ω =
∫

dω(...) the average over
all angles, and ∂t

~ψ(1)(ε, ω, t) ' 0. From the first constraint and the normalization condition
for p(ε) follows that ~Ψ(0) is equal to the macroscopic non-equilibrium spin polarization (recall
that we absorbed the factor J(ε)/(2π)dns in the definiton of δ ~S). Moreover it enforces that
p(ε) approximately describes the energy dependence of the angle averaged non-equilibrium spin
polarization on the time scale τs. The second constraint imposes, again on the time scale τs,
quasi-stationarity for the fluctuations around the total non-equilibrium spin polarization.

Although both constraints are plausible, because of physical considerations, they cannot be
justified mathematically within the relaxation time approach because it is strictly speaking based
on regular perturbation theory. In particular the second constraint, involving the rate of change of
the function ~ψ(1)(ε, ω, t), is beyond regular perturbation theory. To justify the constraint requires
a multiple time scale perturbation theory.

Inserting Eqs. (3.118) and (3.119) into the Fokker-Planck equation (3.55), imposing the two
constraints, and collecting terms through second order, we obtain a set of two coupled equations
which govern the time evolution of the total non-equilibrium spin polarization on the time scale
τs: (we suppress the arguments of the various functions):

∂tδ~S = ~ΩL × δ~S − 〈R〉ε,ωδ~S + 〈(~ΩIA + ~Ωg) × ~Ψ(1)〉ε,ω , (3.120)

(D − 1

4τ⊥
L2 + i~ΩC · ~L + ~ΩL×) p ~Ψ(1) + (~ΩIA + ~Ωg) × p δ~S = 0 . (3.121)

Here we defined an weighted average 〈(...)〉ε,ω =
∫

dεdωp(ε)(...), in which p(ε) enters as an energy
weight function. Equations (3.120) and (3.121) should be contrasted with Eqs. (3.94) and (3.88),
respectively, obtained within the multiple time scale approach.

Except of the Larmor term, the structure of Eq. (3.121) is the same as the structure of Eq.
(3.88). Thus, it can be decoupled with the same techniques, that is, by an expansion in terms
of the solutions Yλ(ω) of the eigenvalue problem (3.97). The Larmor term in Eq. (3.121) is a
consequence of the insufficiency of the smallness parameter “inversion asymmetry”. The torque
forces due to ~ΩIA and ~Ωg are classified as O(1) terms. The torque force due to ~ΩL on the other
hand is not small with respect to “inversion asymmetry”. Hence it is classified as an O(0) term
and appears in Eq. (3.121). Had we classified the Larmor terms as O(1), it would be absent in
Eq. (3.121). For bulk GaAs it turns out that |~ΩL|τl � 1. Thus, the Larmor term is small, but
for reasons which are beyond a classification scheme based on inversion asymmetry.

Due to the Larmor term the decoupling of Eq. (3.121) is somewhat more involved then the
decoupling of Eq. (3.88). We describe here the procedure for bulk in some detail. The calculation
for a quantum well is analogous. In bulk, we can introduce for each momentum channel (l,m)
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a diagonal matrix Tl,m(ε), which relates the (l,m) component of ~Ψ(1) to the (l,m) component

of the vector (~ΩIA + ~Ωg) × δ~S(t). The elements of Tl,m(ε) satisfy then decoupled differential
equations. Note, without the Larmor term, Tl,m(ε) would be propertional to the unit matrix.

To decouple Eq. (3.121) we again separate the energy and angle dependences of the vectors
~ΩIA and ~Ωg and expand the angle dependences in terms of spherical harmonics. In addition to

the cross products involving the vectors ~ΩIA and ~Ωg, which we again express in terms of the
matrices Clm and Dlm containing the expansion coefficients C i

lm and Di
lm, respectively, we now

also have to rewrite the cross product due to ~ΩL in terms of a matrix. Assuming a magnetic field
along the z-axis, we find

~ΩL × ~Ψ(1)(ε, ω, t) =







0 −ΩL 0
ΩL 0 0
0 0 0







~Ψ(1)(ε, ω, t)

≡ ΩL
~Ψ(1)(ε, ω, t), (3.122)

with ΩL = µBg
∗B/R̃0 the Larmor energy measured in units of R̃0. For this particular choice

of magnetic field, the orbital motion term becomes i~ΩC · ~L = iΩCLz with ΩC = eB/R̃0m
∗c the

cyclotron energy measured in units of R̃0. With the above definitions, the solution of Eq. (3.121)
can be expressed as

~Ψ(1)(ε, φ, θ, t) = ΣlmU†Tl,m(ε)U[Clm(φ, θ) + Dlm(φ, θ)]δ~S(t)Ylm(φ, θ),

(3.123)

where U is the unitary matrix that diagonalizes the matrix ΩL, and Tl,m(ε) is a diagonal matrix
whose elements, rν

lm(ε), are the solution of the differential equation (ν = 1, 2, and 3)

[D(ε) + i(mΩC + Ων
L) − 1

τl(ε)
]p(ε)rν

lm(ε) + hl(ε)p(ε) = 0, (3.124)

with 1/τl(ε) = l(l + 1)/4τ⊥(ε), Ων
L = ΩL(δν1 − δν2), hl(ε) = (1/τIA(ε))δl3 + (1/τg(ε))(δl2 + δl0).

Note, except of the Larmor term, Eq. (3.124) has the same structure as Eq. (3.104).
Using (3.123) in (3.120) and performing the average over ω and ε in the third term on the

right hand side, we finally obtain a Bloch equation for the total non-equilibrium spin polarization,

∂tδ~S(t) = ~ΩL × δ~S(t) − Γδ~S(t), (3.125)

where the total spin relaxation tensor is given by Γ = ΓEY + ΓDP + ΓV G, with

ΓEY = 〈R〉ε,ω, (3.126)

ΓDP = −
∑

lm

ClmU†〈hl(ε)Tl,−m(ε)〉εUCl,−m, (3.127)

ΓV G = −
∑

lm

DlmU†〈hl(ε)Tl,−m(ε)〉εUDl,−m (3.128)

the contributions due to the EY, the DP, and the VG processes, respectively. To perform the
angle average we used the orthonormality of the spherical harmonics. Equations (3.126), (3.127),
and (3.128) should be contrasted with Eqs. (3.95), (3.106), and (3.107) derived in the previous
subsection within the multiple time scale approach. Obviously, the structure of the two sets of
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equations is similar. The main differences are that Tl,m is a diagonal matrix and not proportional
to the unit matrix and that the weight function p(ε) defining the energy averages is unspecified.
The relaxation time approximation does not provide an equation to determine p(ε).

For bulk, the diagonal elements of the total spin relaxation tensor Γ are the longitudinal
(1/T1 = Γzz) and the transverse spin relaxation rates (magnetic field along the z-axis). Form
Eqs. (3.126)–(3.128) we explicitly obtain (i = 1, 2)

1

Ti
=

1

TEY
i

+
1

TDP
i

+
1

TVG
i

, (3.129)

with the EY contributions

1

TEY
1

=
2

TEY
2

=
32π

3
C2

sf

〈

ε2

τ1(ε)

〉

ε

, (3.130)

the DP contributions

1

TDP
1

= 4|Cy
31|2τ̃3

31 + 4|Cy
33|2τ̃3

33, (3.131)

1

TDP
2

= 2|Cz
32|2τ̃3

32 + 2|Cy
31|2τ̃3

31 + 2|Cy
33|2τ̃3

33, (3.132)

and the VG contributions

1

TVG
1

= 4|Dy
21|2τ̃1

21, (3.133)

1

TVG
2

= |Dz
00|2τ̃1

00 + |Dz
20|2τ̃1

20 + 2|Dy
21|2τ̃3

21, (3.134)

where we defined

τ̃ν
lm = Re

〈

hl(ε)r
ν
lm(ε)

〉

ε
, (3.135)

which in the elastic approximation, which neglects the differential operator D(ε) in Eq. (3.124)
reduces to

τ̃ν
lm =

〈

τl(ε)
[

C2
IAε

3δl3 + C2
g (B)ε2(δl2 + δl0)

]

1 + [(mΩC + Ων
L)τl(ε)]2

〉

ε

. (3.136)

Similar to the multiple time scale approach, the relaxation time approximation reduces the
calculation of the spin relaxation tensor (rates) to the calculation of weighted energy averages. The
weight function p(ε), introduced throught the product ansatz (3.118), cannot be calculated within
the relaxation time approximation. This is in contrast to the multiple time scale approach, where
p(ε) is the solution of D(ε)p(ε) = 0 with an appropriate normalization. The constraints imposed
on the product ansatz suggest, however, that p(ε) describes the energy dependence of the angle
averaged non-equilibrium spin polarization in the final stages of the spin evolution, where each
spin subsystem is almost equilibrated. It is therefore plausible to assume p(ε) ∼ −N(ε)∂εf(ε),
where N(ε) is the density of states and f(ε) is the distribution function of the equilibrated
electrons at t→ ∞. Recalling J(ε) ∼ N(ε) and normalizing p(ε), we specifically write (for bulk)

p(ε) =
−∂εf(ε)

√
ε

4π
∫

dε(−∂εf(ε))
√
ε
. (3.137)
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Figure 3.13: Calculated transverse spin relaxation time for electrons in GaAs at low temperatures as
a function of electron density. The Elliott-Yafet, D’yakonov-Perel’, and total spin relaxation times are
shown. Data labeled with dots are from Ref. [169] and data labeled with triangles are from Ref. [216].

The numerical data presented below were obtained for this particular p(ε).

The expressions for the spin relaxation rates one would obtain from Eq. (3.95), (3.106), and
(3.107) are essentially identical to Eqs. (3.130) – (3.134). The “wrong classification” of the Larmor
term within the relaxation time approximation is, at least for GaAs, irrelevant because ΩLτl � 1.
Thus, the denominator in Eq. (3.136) reduces to 1 + [mΩCτl(ε)]

2 and τ̃1
lm = τ̃2

lm = τ̃3
lm = τ̃lm.

As a result, Tl,m is de facto diagonal as in the multiple time scale approach. The only difference
is then that within the relaxation time approximation p(ε) is given by Eq. (3.137) and not as
the appropriately normalized solution of D(ε)p(ε) = 0. Because the rigorously obtained p(ε) is
qualitatively very close to the ad-hoc choice (3.137), the numerical results obtained within either
approach are practically identical.

For the calculation of the spin relaxation rates presented in this subsection we specifically
included scattering on ionized impurities, acoustic phonons, and optical (LO) phonons. Electron-
electron scattering is negligible in the considered temperature and density ranges. We are pri-
marily interested in the magnetic field dependence of the spin relaxation rates which, at least
qualitatively, does not depend on the approximation adopted to describe the scattering pro-
cesses. For simplicity we adopted therefore the elastic approximation, that is, τ̃ ν

lm is given
by Eq. (3.136). The energy averages were calculated with saddle-point techniques, exploit-
ing the peaked structure of the integrands at low and high temperatures. The parameters
needed to specify ~Ωg(~k) have been previously obtained, partly experimentally by measuring com-
bined cyclotron resonances (a4, a6) and partly theoretically within a five-level Kane model (a5):
(a4, a5, a6) = (97,−8, 49) × 10−24eVcm2Oe−1. [205] The parameter defining ~ΩIA(~k) is given by

δ0 = 0.06h̄3/
√

(2m∗)3εg. [164] The remaining parameters, such as the effective CB electron mass

or the deformation potential, are available from standard data bases [213].

Figure 3.13 shows the results of a calculation of the T2 lifetime at low temperature as a
function of density for electrons in bulk GaAs. The scattering is dominated by charged impurity
(donor) scattering and the density of charged donors is taken to be the same as the electron
density (i.e., that the materials are uncompensated). The contribution to spin lifetime from the
EY process, DP process and the total lifetimes are shown. The DP process dominates the spin
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relaxation at all densities. The spin relaxation time is a strongly decreasing function of density.
The spin polarization arises from electrons on the Fermi surface. As the density increases the
Fermi surface rises higher in the conduction band. Both the band splitting, due to the inversion
asymmetric component of the crystal potential, which is responsible for the DP spin relaxation
process and the admixture of bonding p-states into the conduction band wave functions, which is
responsible for the EY spin relaxation process, increase for states higher in the conduction band.
Therefore both the DP and EY spin relaxation rates increase as the Fermi energy increases. Also
shown on Fig. 3.13 are measured T2 lifetimes for GaAs from Ref. [169, 216] at low temperature
and degenerate electron densities. The calculated results are in reasonably good agreement with
the measurements. There are no adjustable parameters in the calculation. To the low density
data of Ref. [169] (not shown in Fig. 3.13) our theory, which is based on a band description of
the electronic states, is not applicable because, under the conditions of the experiment, electrons
are most probably bound to the donors.

A small magnetic field (< 1Tesla) was applied to the samples in the experimental results
reproduced in Fig. 3.13, in order to distinguish longitudinal and transverse relaxation times.
This field is not large enough to significantly influence the spin dynamics, except, of course, for
the precession of the spin polarization about the magnetic field. That is, in this range of magnetic
fields the longitudinal and transverse relaxation times do not change with magnetic field. For
larger magnetic fields the relaxation rates themselves become functions of the field. The Fokker-
Planck equation (3.55) for the spin polarization contains terms describing the EY [term containing
R(~k)] and DP [term containing ~ΩIA(~k)] spin relaxation processes and a term which describes spin
precession about an applied magnetic field (term containing ~ΩL). There are two additional terms
that depend on magnetic field; one that describes the orbital motion of the conduction band
electrons in the magnetic field (term containing ~ΩC) and a term that describes the change in
electron g-factor for states away form the zone center [term containing ~Ωg(~k)]. The EY spin
relaxation process arises due to spin-flip scattering events and is not significantly influenced by
a magnetic field. By contrast the DP spin relaxation process originates from an interplay of spin
conserving wave vector scattering events described by the operator D− (1/4τ⊥)L2 and the torque
forces due to ~ΩIA. The cyclotron orbital motion described by −iΩC · Lz leads to a quenching of
the DP process similar to that from wave vector scattering events because the axis of the torque
force depends on wave vector and that axis is changed by the cyclotron orbital motion. [160]
The wave vector dependence of the conduction band electron g-factor opens an additional spin
relaxation process which tends to reduce the spin lifetimes in applied magnetic fields. [161] As
a result of the variations in the g-factor, electrons with different wave vectors precess about a
transverse magnetic field at different rates and thus lose spin coherence. We refer to this process
as a variable g-factor (VG) mechanism. The VG mechanism primarily effects the T2 lifetime. [11]

In Fig. 3.14 we show calculated longitudinal (T1) and transverse (T2) spin relaxation times
for GaAs as a function of magnetic field at low temperature and an electron density of n =
1018cm−3. [11] We show separately the contributions to the spin relaxation times from the EY,
DP and VG processes and the total spin relaxation time including all three processes. In the insets
of Fig. 3.14 we give the total spin relaxation time for various electron densities at low temperature.
For the temperature and density conditions in Fig. 3.14 the electrons are degenerate and electron-
ionized impurity scattering dominates. The VG process makes a small contribution to T1 which
is dominated by the DP process at zero magnetic field. As the magnetic field is increased, the DP
process is quenched. Thus, T1 increases monotonically with increasing magnetic field saturating
at high field at a value determined by the EY process which is not affected by the magnetic field.
If the material parameters had been such that the EY process dominated the DP process for T1
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Figure 3.14: The left and right panels show, respectively, the longitudinal (T1) and transverse (T2) spin
relaxation time in GaAs as a function of magnetic field for T = 0 and n = 1018cm−3. The contributions
from the EY (long dash), DP (short dash) and VG (dot-dash) processes and the total relaxation time
(solid) are shown in the main panels. The insets (same axis as the main panel) show the total relaxation
times for n = 5×1016cm−3, 1×1017cm−3, 5×1017cm−3, 1×1018cm−3, 5×1018cm−3, and 1×1019cm−3 (top
to bottom). The squares and triangles are experimental data from Ref. [169] at the respective densities.

relaxation at zero magnetic field, T1 relaxation would not be significantly affected by the applied
field. By contrast the VG process makes a significant contribution to T2 relaxation. At small
applied magnetic fields the T2 lifetime increases with increasing magnetic field, but as the field
continues to increase the VG process begins to dominate the relaxation so that T2 has a maximum
around ∼ 21 Tesla and begins to decrease for larger magnetic fields. If the material parameters
had been such that the EY process dominated the DP process for T2 relaxation at zero magnetic
field, the T2 relaxation would monotonically decrease with increasing magnetic field. The solid
squares and triangles in the lower panel of Fig. 3.14 are measured T2 spin lifetimes in GaAs at
5K from Ref. [169] at electron densities of 1018cm−3 and 5× 1018cm−3. There is reasonably good
agreement between the calculation and measured results. There were no adjustable parameters
in the calculation. The magnetic fields in Ref. [169] are not high enough to completely capture
the effects due to the VG process.

The calculations in Fig. 3.14 assume uncompensated samples so that the ionized donor concen-
tration is the same as the electron density. The scattering rate in these calculations is dominated
by electron-ionized impurity scattering and this scattering rate depends on the impurity concen-
tration. If compensated samples are considered, the density of ionized scattering centers could
be increased for a fixed electron density. Within the Born approximation, the cross section for
electron scattering from positively charged donors and negatively charged acceptors is the same.
In Fig. 3.14, the DP process dominates the EY process at zero magnetic field. The spin relaxation
rate due to the DP process decreases with increased scattering rate whereas the spin relaxation
rate due to the EY process increases with increasing scattering rate. For compensated samples,
the scattering rate should increase and the spin relaxation rate due to the DP process should
decrease whereas the spin relaxation rate due to the EY process should increase with increasing
compensation. At some level of compensation the DP and EY rates should cross. In Fig. 3.15,
we show calculated transverse (T2) spin relaxation times for GaAs as a function of magnetic field
at low temperature and an electron density of n = 1018cm−3 for various compensation levels.
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Figure 3.15: Calculated transverse spin lifetime for GaAs as a function of magnetic field for T = 0,
n = 1018cm−3, and for various degrees of compensation. The compensation is characterized by x, the ratio
of donor plus acceptor impurity concentration divided by the electron density.

The concentration of impurity scattering centers (donors plus acceptors) divided by the electron
density is labelled by x. For the uncompensated case (x = 1), the DP process dominates at zero
field and the spin relaxation time first increases with increasing magnetic field, peaks and then
decreases as the VG process takes over. For more heavily compensated samples (x > 2), the EY
process dominates at zero field and the spin relaxation time is insensitive to field.

In Fig. 3.16, we show the various contributions to the T1 and T2 spin relaxation for GaAs as a
function of magnetic field at T = 100K and an electron density of n = 1017cm−3. [11] The insets
depict the total spin relaxation time as a function of magnetic field for various temperatures
at n = 1017cm−3. For the temperature and density conditions in Fig. 3.16, the electrons are
non-degenerate and electron-LO-phonon scattering is the dominant scattering process. As for
the degenerate electron case, the VG process makes a small contribution to T1 which is again
dominated by the DP process at zero magnetic field. The DP process is quenched by the field so
that T1 increases with field at small fields and saturates at a value determined by the EY process
at large fields. Similar to the degenerate electron case, the VG process makes a substantial
contribution to T2 relaxation. At small fields the T2 lifetime increases with increasing field and
at large fields the VG process begins to dominate the relaxation so that T2 has again a maximum
at some finite magnetic field. The sign of the slope in T2 at small magnetic fields is again a
clear signature of whether the EY process (T2 decreases with increasing field) or DP process (T2

increases with increasing field) dominates T2 relaxation at zero magnetic field. The qualitative
behavior of longitudinal and transverse spin relaxation times with increasing magnetic field is
similar for degenerate and non-degenerate electrons, but the magnitude of the change is larger
for non-degenerate electrons.

In this subsection, we described calculations of the longitudinal (T1) and transverse (T2) spin
relaxation times of conduction band electrons in n-type bulk GaAs focusing on the interplay
between the EY, DP, and VG spin relaxation processes as a function of the magnetic field. Scat-
tering on ionized impurities, acoustic phonons, and optical (LO) phonons was taken into account
within the elastic diffusion approximation. For all field strengths, we neglected quantization
effects due to the external magnetic field. [217, 218] That is, we implicitly assumed the strong
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Figure 3.16: The left and right panels show, respectively, the longitudinal (T1) and transverse (T2) spin
relaxation time in GaAs as a function of magnetic field for T = 100K and n = 1017cm−3. The contributions
from the EY (long dash), DP (short dash) and VG (dot-dash) processes and the total relaxation time (solid)
are shown in the main panel. The insets (same axis as the main panel) show the total relaxation times for
T = 150K, 200K, 250K, and 300K (top to bottom).

scattering limit, where Landau levels are blurred and electrons effectively reside in (restored)
band states. In p-type materials, the Bir-Aronov-Pikus (BAP) process provides an additional,
efficient spin relaxation channel. [158, 164, 165] The BAP process can be incorporated into the
kinetic approach outlined in the previous sections by adding an additional collision integral J ehX

B

to the kinetic equation for the nonequilibrium spin polarization, which describes exchange scat-
tering of electrons on equilibrium holes. The diffusion approximation cannot be applied to J ehX

B ,
however, and the integral form of the kinetic equation (3.30) has to be used to calculate the spin
relaxation rates due to the BAP process.

3.5 Concluding Remarks

Starting from the full quantum kinetic equations for the electron Green functions we derived
a (semiclassical) Fokker-Planck equation for the non-equilibrium spin polarization, assuming
small spin polarizations and soft scattering. The Fokker-Planck equation conceptualizes the
non-equilibrium spin dynamics in terms of a “test” spin polarization, comprising a small number
of spin polarized “test” electrons, which scatter off an equilibrated bath consisting of impurites,
phonons, and spin-balanced “field” electrons. Because of the scattering, the bath causes for the
spin polarization dynamical friction, diffusion, and relaxation (decay). We then employed a mul-
tiple time scale perturbation approach to separate the fast, spin-conserving from the slow, spin
non-conserving time evolution. As a result, we extracted from the Fokker-Planck equation a Bloch
equation which controls the time evolution of the macroscopic (~k-averaged) spin polarization on
the long time scale, where the spin polarization decays. Our semiclassical approach accounts for
elastic and inelastic scattering processes. The spin relaxation rates are given in terms of weighted
energy averages of either a spin-flip rate (EY process) or a generalized relaxation time multiplied
by a precession rate (DP and VG processes). The weight function for the energy averages turns
out to be intimately linked to the “quasi-stationary” spin polarization, which is the terminating
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state of the fast, spin-conserving time evolution taking place immediately after spin injection.

The formal development of our approach is based on a generic model for non-magnetic III-V
semiconductors and treats EY and motional narrowing (DP and VG) spin relaxation processes
on an equal footing. We also allowed for orbital motion of the electrons in a strong magnetic field,
which potentially leads to a quenching of the motional narrowing-type spin relaxation processes.
The derivation of the Fokker-Planck equation is independent of dimensionality and, as long as a
soft scattering regime can be identified, also of the scattering processes, which enter the Fokker-
Planck equation in the form of dynamical friction and diffusion coefficients, which have to be
worked out separately for each scattering process.

As a first application of our formalism, we considered spin relaxation in a GaAs quantum
well at low temperatures, where electron-electron and electron-impurity scattering dominate. We
explicitly constructed the friction, diffusion and angle randomization coefficients characterizing
the (symmetry-adapted) Fokker-Planck equation for that particular situation and calculated the
DP spin lifetime at vanishingly small magnetic field as a function of electron density and tem-
perature. We found that for fixed temperature (density) the density (temperature) dependence
is non-monotonic. Spin lifetimes are particularly long for densities and temperatures, where the
cross-over from a non-degenerate to a degenerate electron gas occurs. Spin lifetimes in compen-
sated quantum wells are always longer than in modulation doped quantum wells with the same
electron density. The enhancement of the spin lifetime is particularly strong for densities and
temperatures where Pauli blocking is most efficient in suppressing the DP spin lifetime (due to
electron-electron scattering) in modulation doped quantum wells.

We then discussed the magnetic field dependence of spin relaxation rates in bulk GaAs.
Historically this was the first application of our semiclassical description of the non-equilibrium
spin dynamics in non-magnetic semiconductors. The separation of the fast, spin conserving from
the low spin non-conserving scattering processes were at that time not yet based on the multiple
time scale analysis. Instead, we employed a relaxation time approximation, which is conceptually
simpler but requires a number of ad-hoc assumptions. Although these assumptions can be made
plausible by physical considerations, the desire to avoid them triggered the more demanding
multiple time scale approach. We argued that, with an appropriate choice of the weight function
p(ε), which cannot be calculated within the relaxation time approximation, the numerical results
for the spin relaxation rates obtained from the relaxation time approximation are practically
identical to the numerical results one would obtain from the more general multiple time scale
approach.

To study the magnetic field dependence we specifically applied the elastic approximation. The
calculation of the spin relaxtion rates reduces then to quadratures which can be done by saddle
point techniques. At finite magnetic field, the VG process competes with the DP process. We find
that, as a consequence of the interplay of the DP and the VG processes, T2 can have a maximum
as a function of magnetic field. In contrast, T1 is not affected by the VG process and increases
with magnetic field until it saturates at a value determined by the EY process. The sign of the
change in T2 with increasing magnetic field at small fields indicates, moreover, whether the EY
process or the DP process dominates T2 relaxation at zero magnetic field. Our calculated results
are in good agreement with existing experimental data in n-type GaAs and we make additional
specific predictions for the magnetic field dependence of electron spin lifetimes that are subject
to experimental check.

Various extensions of our approach are conceivable and constitute research directions for the
future. Semiconductor structures with structural inversion asymmetry [190] and/or native inter-
face asymmetry [182] can be studied within our approach by augmenting the model Hamiltonian
by the corresponding spin off-diagonal Hamiltonian matrix elements. In particular, the role of
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the linear collision integral J
(1)
B [f, δ ~S], which does not affect spin lifetimes in isotropic semicon-

ductors, should be reinvestigated, e.g., for an asymmetric quantum well, where spin lifetimes can
be particularly long because motional narrowing processes due to bulk and structural inversion

asymmetry can be made to cancel each other. [194, 199] Since J
(1)
B [f, δ ~S] potentially mixes spin

relaxation channels, it could affect the cancellation. A Fokker-Planck equation of the form (3.55),
augmented by additional driving terms, could be the starting point for a systematic calculation of
spin transport coefficients (e.g., spin diffusion length) for spatially inhomogeneous systems, such
as interfaces or biased heterostructures. Finally, non-linear effects due to large spin polarizations
could be studied either at the level of the matrix-Boltzmann equation for the electronic density
matrix [201, 202] or, if the diffusion approximation is used to simplify the collision terms, at the
level of a “Fokker-Planck-Landau equation” for the spin polarization, where the differential oper-
ator, describing spin-conserving scattering events, as well as the spin-flip tensor explicitly depend
on the spin polarization and the distribution of the spin polarized electrons.
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Appendix

Construction of the Fokker-Planck Differential Operator

Within the diffusion approximation, the kinetic equation for the excess spin polarization is a
differential equation in which spin-conserving collision processes are described by a Fokker-Planck
differential operator D(~k) = D(ε, ω) while spin-flip scattering is encoded in a spin-flip tensor
R(~k) = R(ε, ω). The dynamical friction and diffusion coefficients, Ai(~k) and Bij(~k), which
determine the differential operator and the spin-flip tensor, depend on the scattering processes
and the dimensionality.

As an illustration, we now construct for a [001] quantum well the dynamical friction and
diffusion coefficients due to electron-electron and electron-impurity scattering. For bulk semicon-
ductors, the calculation is essentially the same, except of an additional angle integration. The
coefficients due to electron-phonon scattering can be obtained in a similar way. From the fric-
tion and diffusion coefficients, we can then construct the symmetry-adapted differential operator
D(ε, ω) and the symmetry-adapted spin-flip tensor R(ε, ω). Since we discuss for a quantum well
only the DP process quantitatively, which originates from the interplay of the differential operator
and the torque force due to inversion asymmetry, we give only explicit expressions for D(ε, ω).
The spin-flip tensor R(ε, ω) can be obtained along the same lines.

First, we consider electron-electron scattering and calculate Aee
i and Bee

ij . To avoid the cut-
off problem at large momentum transfers, which usually plagues the diffusion approximation to
electron-electron scattering, we keep the full integrands in Eqs. (3.46) and (3.47), i.e., we do not
expand the distribution functions and energies with respect to the momentum transfer ~q. Using
the identities f(~k)f(~k± ~q) = [f(~k± ~q)− f(~k)]n(ε(~k)− ε(~k± ~q)), with n(x) the Bose function,and
δ(ε(~k) + ε(~k′) − ε(~k − ~q) − ε(~k′ + ~q)) =

∫

dωδ(ε(~k) − ε(~k − ~q) − ω) · δ(ε(~k′) − ε(~k′ + ~q) + ω), we
rewrite the transition probability (3.41) into

W ee(~k; ~q) = 2

∫ ∞

−∞
dω|V (q)|2Imχ(q, ω)[n(−ω) + f(~k − ~q)]δ(ε(~k) − ε(~k − ~q) − ω) , (A.1)

where we introduced the susceptibility of noninteracting electrons

Imχ(q, ω) = 2π
∑

~k

[f(~k + ~q) − f(~k)]δ(ε(~k + ~q) − ε(~k) − ω) . (A.2)

Note, we calculate the transition probability with the distribution function f(~k) of the equilibrated
electrons at t → ∞, that is, we assume the number of “test” electrons contributing to the spin
polarization to be much smaller then the number of spin-balanced “field” electrons.

The Coulomb potential V (q) is taken to be statically screened with a screening length given
by the Thomas-Fermi-Hückel expression, that is, V (q) = 4πe2/εb(q + qs), with e the elementary
charge, εb the background dielectric constant, and qs the inverse Thomas-Fermi-Hückel screening
length; here we assumed an ideal quantum well with infinite confinement. Had we allowed for
dynamical screening, V (q) → V (q, ω) = V0(q)/ε(q, ω), with V0(q) the bare Coulomb potential. If
ε(q, ω) is approximated by the RPA expression, the resulting Fokker-Planck equation would be
at the level of a quantum analog to the Lenard-Balescu equation. [206] The calculation of the
relaxation rates presented below could be also performed with this more general expression for
the Coulomb matrix element. For simplicity we present here however only the results for the
statically screened Coulomb potential.

The dimensionless Fokker-Planck operator has the same form as in Eq. (3.45) with dynamical



146 Electron Spin Dynamics in Semiconductors [9–11]

friction and diffusion coefficients given by

Aee
i (~k) = Cm

ee

∫

d~q qiW
ee(~k; ~q) , (A.3)

Bee
ij (~k) =

Cm
ee

2

∫

d~q qiqjW
ee(~k; ~q) , (A.4)

with Cm
ee = sm∗/ε2bπm0 and

W ee(~k; ~q) =

∫ ∞

−∞
dω
F (k2, ω, q)

(q + qs)2
δ(~k · ~q − q2

2
− ω

2
) , (A.5)

where qs is the Thomas-Fermi screening wave number. The function F (k2, ω, q) originates from
the statistics of the electron gas and is given by

F (k2, ω, q) = Imχ̃(q, ω)N(k2, ω) , (A.6)

Imχ̃(q, ω) =

∫

d~k[f(k2 + ω) − f(k2)]δ(~k · ~q +
q2

2
− ω

2
) , (A.7)

N(k2, ω) = f(k2 − ω) + n(−ω) , (A.8)

with f(x) and n(x) the Fermi and Bose functions, respectively. To calculate Aee
i (~k) and Bee

ij (~k)
for a [001] quantum well, we first evaluate the integrals for a fixed coordinate system in which
(the two-dimensional vector) ~k = kêx and then rotate to an arbitrary coordinate system. The
result can be cast into the form

Aee
i (~k) = −8

k
G(k)ki , (A.9)

Bee
ij (~k) =

2

k
H(k)δij +

2

k3
E(k)kikj , (A.10)

respectively, with three functions defined by

G(k) = −C
m
ee

4k

∫ k2

−∞
dω

∫ qmax

qmin

dq
qF (k2, ω, q)

(q + qs)2
z√

1 − z2
, (A.11)

H(k) =
Cm

ee

2

∫ k2

−∞
dω

∫ qmax

qmin

dq
q2F (k2, ω, q)

(q + qs)2

√

1 − z2 , (A.12)

E(k) = −C
m
ee

2

∫ k2

−∞
dω

∫ qmax

qmin

dq
q2F (k2, ω, q)

(q + qs)2
1 − 2z2

√
1 − z2

. (A.13)

Note that these integrals are well defined. The range of integration originates from the φ-
integration which also gives rise to the factor involving z = (q2 + ω)/2kq. With Eqs. (A.9)
and (A.10) and a transformation to the radial variable ε = k2, the spin-conserving part of the di-
mensionless electron-electron collision integral is given by (recall that in two dimensions δ ~S(ε, φ, t)
contains the factor J(ε)/(2π)2ns = 1/8π2ns)

J (0)
ee [f, δ ~S] = Dee(ε, φ)δ~S(ε, φ, t) , (A.14)

with

Dee(ε, φ) = − ∂

∂ε
vee(ε) +

∂2

∂ε2
wee(ε) − uee(ε)L2(φ) . (A.15)
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Figure 3.17: The domain bounded by the solid lines is the range of integration for the integrals (A.16),
(A.17) and (A.18) defining, respectively, vee(ε), wee(ε), and uee(ε) for a fixed ε. The “test” electrons
comprising the spin polarization cannot only gain (ω < 0) but also lose (ω > 0) energy due to inelastically
scattering off “field” electrons.

Here we have introduced the total angular momentum operator in two dimensions, L̂(φ) =
−i∂/∂φ, and the friction, diffusion and angle randomization coefficients, vee(ε), wee(ε), and
uee(ε), which are linear combinations of the functions G(k), H(k), and E(k) taken at k =

√
ε.

Specifically, they read:

vee(ε) = −2Cm
ee

ε1/2

∫ ε

−∞
dω

∫ qmax

qmin

dq
ωF (ε, ω, q)

(q + qs)2
1√

1 − z2
, (A.16)

wee(ε) = 4Cm
ee

√
ε

∫ ε

−∞
dω

∫ qmax

qmin

dq
q2F (ε, ω, q)

(q + qs)2
z2

√
1 − z2

, (A.17)

uee(ε) =
Cm

ee

ε3/2

∫ ε

−∞
dω

∫ qmax

qmin

dq
q2F (ε, ω, q)

(q + qs)2

√

1 − z2 . (A.18)

The range of integration, which is shown in Fig. 3.17, depends on the sign of ω, qmax =
q−max(ε, ω)Θ(−ω) + q+

max(ε, ω)Θ(ω) and qmin = q−min(ε, ω)Θ(−ω) + q+
min(ε, ω)Θ(ω), with

q−min(ε, ω) = −
√
ε+

√
ε− ω , ω ≤ 0 , (A.19)

q−max(ε, ω) =
√
ε+

√
ε− ω , ω ≤ 0 , (A.20)

q+min(ε, ω) =
√
ε−

√
ε− ω , 0 ≤ ω ≤ ε , (A.21)

q+max(ε, ω) =
√
ε+

√
ε− ω , 0 ≤ ω ≤ ε . (A.22)

The functions vee(ε) and wee(ε) are the dynamical friction and diffusion coefficients for the spin
polarization in ε-space. They originate from the scattering of the “test” electrons comprising the
spin polarization with the equilibrated, spin-balanced “field” electrons. Because the scattering is
inelastic, the “test” electrons gain (ω < 0) or lose (ω > 0) energy by scattering off “field” electrons.
The on-shell function uee(ε) describes randomization of the angle φ. The integrals defining vee(ε),
wee(ε), and uee(ε) have to be done numerically. The singularities are integrable and Gaussian
integration proved to be efficient. The limiting values are limε→0uee(ε) = u0/ε, limε→0wee(ε) = 0,
and limε→0vee(ε) = v0. Moreover, wee(ε) = v0ε for ε → 0, i.e. dwee(0)/dε = vee(0), which is
essential to guarantee spin conservation of the differential operator Dee(ε, φ) [see Eq. (3.84) in this
respect]. The structure of the differential operator suggests to write vee = ε/τ ee

f , wee = ε2/τ ee
d ,

and uee = 1/4τ ee
⊥ , with 1/τ ee

f , 1/τ ee
d , and 1/τ ee

⊥ relaxation rates describing energy relaxation,
diffusion, and randomization of the angle due electron-electron scattering, respectively.
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The calculation of the (on-shell) relaxation rate due to electron-impurity scattering proceeds
along the same lines. The starting point is Eq. (3.37), specialized to electron-impurity scatter-
ing, that is, with W ν(~k, ~q) given by Eq. (3.40). Going through the same steps as in the case
of electron-electron scattering yields for the spin-conserving part of the dimensionless electron-
impurity collision integral (as before δ ~S(ε, φ, t) contains the factor 1/8π2ns)

J
(0)
ei [f, δ ~S] = Dei(ε, φ)δ~S(ε, φ, t) , (A.23)

where the differential operator is now given by

Dei(ε, ω) = −uei(ε)L2(φ) , (A.24)

with

uei(ε) =
Cm

ei

ε3/2

∫ 2
√

ε

0
dq

q2

(q + qs)2

√

1 − z2 , (A.25)

Cm
ei = s(4πm∗niã

2
0/ε

2
bm0) and z = q/2

√
ε, where ni is the sheet density of the impurities. Because

of the elasticity of electron-impurity scattering, the differential operator contains only an on-shell
term. The function uei = 1/4τ ei

⊥ defines the relaxation time due to electron-impurity scattering.
It only causes randomization of the angle φ. The total spin-conserving collision integral, taking
electron-electron and electron-impurity scattering into account, is given by

D(ε, ω) = Dee(ε, ω) + Dei(ε, ω) . (A.26)

Similar expressions can be derived for electron-phonon scattering. For bulk semiconductors
the calculation proceeds along the same lines with the obvious modifications due to the additional
angle integration.
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